中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
(本小題滿分12分)
已知橢圓上任一點P,由點P向x軸作垂線段PQ,垂足為Q,點M在PQ上,且,點M的軌跡為C.
(Ⅰ)求曲線C的方程;
(Ⅱ)過點D(0,-2)作直線l與曲線C交于A、B兩點,設N是過點且平行于軸的直線上一動點,滿足(O為原點),問是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線的方程;若不存在說明理由.
(Ⅰ);(Ⅱ)
設M(x,y)是曲線C上任一點,根據,用M的坐標表示出P的坐標,然后根據點P在橢圓上,可求出點M的軌跡方程.
(II) 當直線l的斜率不存在時,顯然不滿足條件,所以設直線l的方程為y=kx-2,它與橢圓方程聯立消y后得到關于x的一元二次方程,然后因為,所以四邊形OANB為平行四邊形,
假設存在矩形OANB,則,即
從而根據韋達定理可得到關于k的方程,求出k值,再驗證是否滿足判別式大于零.
(Ⅰ)設M(x,y)是曲線C上任一點,因為PM⊥x軸,,所以點P的坐標為(x,3y)  點P在橢圓上,所以
因此曲線C的方程是                               …………5分
(Ⅱ)當直線l的斜率不存在時,顯然不滿足條件
所以設直線l的方程為y=kx-2與橢圓交于A(x1,y1),B(x2,y2),經N點平行x軸的直線方程為


,       …………8分
因為,所以四邊形OANB為平行四邊形,
假設存在矩形OANB,則

所以
,       …………10分
設N(x0,y0),由,得
,即N點在直線
所以存在四邊形OANB為矩形,直線l的方程為       …………12分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

.已知橢圓的左、右焦點分別是F1(-c,0)、F2(c,0),Q是橢圓外的動點,滿足點P是線段F1Q與該橢圓的交點,點T在線段F2Q上,并且滿足

(Ⅰ)設為點P的橫坐標,證明
(Ⅱ)求點T的軌跡C的方程;
(Ⅲ)試問:在點T的軌跡C上,是否存在點M,使△F1M的面積S=若存在,求∠F1MF2的正切值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(12分)如圖,AB是過橢圓左焦點F的一弦,C是橢圓的右焦點,已知|AB|=|AC|=4,∠BAC=90°,求橢圓方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若橢圓的對稱軸為坐標軸,長軸長與短軸長的和為,焦距為,則橢圓的方程為( )
A.B.
C.D.以上都不對

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

在同一平面直角坐標系中,經過伸縮變換后,曲線C變為曲線
則曲線C的方程為(    )
A.25x2+36y2=0B.9x2+100y2="0"
C.10x+24y=0D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(14分)已知橢圓經過點(0,1),離心率
(1)求橢圓C的方程;
(2)設直線與橢圓C交于A、B兩點,點A關于x軸的對稱點為
①試建立 的面積關于m的函數關系;
②某校高二(1)班數學興趣小組通過試驗操作初步推斷;“當m變化時,直線與x軸交于一個定點”。你認為此推斷是否正確?若正確,請寫出定點坐標,并證明你的結論;若不正確,請說明理由。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)
已知圓方程為:.
(Ⅰ)直線過點,且與圓交于兩點,若,求直線的方程;
(Ⅱ)過圓上一動點作平行于軸的直線,設軸的交點為,若向量,求動點的軌跡方程,并說明此軌跡是什么曲線.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題12分)已知橢圓的離心率,過兩點的直線到原點的距離是
(1)求橢圓的方程 ; 
(2)已知直線交橢圓于不同的兩點,且都在以為圓心的圓上,求的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知點P是橢圓上的動點,F1F2分別為其左、右焦點,O是坐標原點,則的取值范圍是            

查看答案和解析>>

同步練習冊答案