(本小題滿分14分)如圖9-3,已知:射線OA為y=kx(k>0,x>0),射線OB為y= -kx(x>0),動點P(x,y)在∠AOx的內部,PM⊥OA于M,PN⊥OB于N,四邊形ONPM的面積恰為k.
(1)當k為定值時,動點P的縱坐標y是橫坐標x的函數,求這個函數y=f(x)的解析式;
(2)根據k的取值范圍,確定y=f(x)的定義域.
解:(1)設M(a,ka),N(b,-kb),(a>0,b>0)。
則|OM|=a
,|ON|=b
。
由動點P在∠AOx的內部,得0<y<kx。
∴|PM|=
=
,|PN |=
=![]()
∴S四邊形ONPM=S△ONP+S△OPM=
(|OM|·|PM|+|ON|·|PN|)
=
[a(kx-y)+b(kx+y)]=
[k(a+b)x - (a-b)y]=k
∴k(a+b)x-(a-b)y=2k ①
又由kPM= -
=
, kPN=
=
,
分別解得a=
,b=
,代入①式消a、b,并化簡得x2-y2=k2+1。
∵y>0,∴y=![]()
(2)由0<y<kx,得 0<
<kx
![]()
![]()
![]()
(*)
當k=1時,不等式②為0<2恒成立,∴(*)
x>
。
當0<k<1時,由不等式②得x2<
,x<
,∴(*)![]()
<x<
。
當k>1時,由不等式②得x2>
,且
<0,∴(*)
x>![]()
但垂足N必須在射線OB上,否則O、N、P、M四點不能組成四邊形,所以還必須滿足條件:y<
x,將它代入函數解析式,得
<
x
解得
<x<
(k>1),或x∈k(0<k≤1).
綜上:當k=1時,定義域為{x|x>
};
當0<k<1時,定義域為{x|
<x<
};
當k>1時,定義域為{x|
<x<
}.
科目:高中數學 來源: 題型:
| 3 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
(本小題滿分14分)設橢圓C1的方程為
(a>b>0),曲線C2的方程為y=
,且曲線C1與C2在第一象限內只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數學 來源:2011年江西省撫州市教研室高二上學期期末數學理卷(A) 題型:解答題
(本小題滿分14分)
已知
=2,點(
)在函數
的圖像上,其中
=
.
(1)證明:數列
}是等比數列;
(2)設
,求
及數列{
}的通項公式;
(3)記
,求數列{
}的前n項和
,并證明
.
查看答案和解析>>
科目:高中數學 來源:2015屆山東省威海市高一上學期期末考試數學試卷(解析版) 題型:解答題
(本小題滿分14分)
某網店對一應季商品過去20天的銷售價格及銷售量進行了監測統計發現,第
天(
)的銷售價格(單位:元)為
,第
天的銷售量為
,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額
關于第
天的函數關系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年廣東省高三下學期第一次月考文科數學試卷(解析版) 題型:解答題
(本小題滿分14分)已知
的圖像在點
處的切線與直線
平行.
⑴ 求
,
滿足的關系式;
⑵ 若
上恒成立,求
的取值范圍;
⑶ 證明:
(
)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com