如圖,四邊形
中,
為正三角形,
,
,
與
交于
點.將
沿邊
折起,使
點至
點,已知
與平面
所成的角為
,且
點在平面
內的射影落在
內.![]()
(Ⅰ)求證:
平面
;
(Ⅱ)若已知二面角
的余弦值為
,求
的大小.
(Ⅰ)由
為
的中點,可得
,又
,所以
平面
;
(Ⅱ)
.
解析試題分析:(Ⅰ)易知
為
的中點,
則
,又
,
又
,
平面
,
所以
平面
(4分)
(Ⅱ)方法一:以
為
軸,
為
軸,過
垂直于
平面
向上的直線為
軸建立如圖所示空間![]()
直角坐標系,則
,![]()
(6分)
易知平面
的法向量為
(7分)
,
設平面
的法向量為![]()
則由
得,![]()
解得,
,令
,則
(9分)
則![]()
解得,
,即
,即
,
又
,∴
故
.(12分)
考點:本題主要考查立體幾何中的垂直關系,角的計算。
點評:典型題,立體幾何題,是高考必考內容,往往涉及垂直關系、平行關系、角、距離的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟,本題利用向量法,簡化了證明過程。折疊問題,要注意折疊前后“變”與“不變”的量。
科目:高中數學 來源: 題型:解答題
已知某幾何體的直觀圖和三視圖如下圖所示,其正視圖為矩形,側視圖為等腰直角三角形,俯視圖為直角梯形
(1)求證:
; (2)求證:![]()
;
(3)設
為
中點,在
邊上找一點
,使![]()
平面
,并求
的值.![]()
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在三棱錐P-ABC中, AB="AC=4," D、E、F分別為PA、PC、BC的中點, BE="3," 平面PBC⊥平面ABC, BE⊥DF.![]()
(Ⅰ)求證:BE⊥平面PAF;
(Ⅱ)求直線AB與平面PAF所成的角.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,正方體ABCD—A1B1C1D1棱長為8,E、F分別為AD1,CD1中點,G、H分別為棱DA,DC上動點,且EH⊥FG.![]()
(1)求GH長的取值范圍;
(2)當GH取得最小值時,求證:EH與FG共面;并求出此時EH與FG的交點P到直線
的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。將△ABD沿邊AB折起, 使得△ABD與△ABC成30o的二面角
,如圖二,在二面角
中.![]()
(1) 求D、C之間的距離;
(2) 求CD與面ABC所成的角的大小;
(3) 求證:對于AD上任意點H,CH不與面ABD垂直。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分12分)
如圖,四棱錐P—ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點。![]()
(1)求證:CD⊥AE;
(2)求證:PD⊥面ABE。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)已知直三棱柱
中,△
為等腰直角三角形,∠
=
,且
=
,
、
、
分別為
、
、
的中點.![]()
(1)求證:
∥平面
;
(2)求證:
⊥平面
;
(3)求三棱錐
的體積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com