中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
設函數f(x)=2cosx(sinx+cosx)-1將函數f(x)的圖象向左平移a個單位,得到函數y=g(x)的圖象.
(1)求函數f(x)的最小正周期;
(2)若0<a<
π2
,且g(x)是偶函數,求a的值.
分析:(1)利用降次以及兩角和的正弦,化簡為一個角的一個三角函數的形式,求函數f(x)的最小正周期;
(2)0<a<
π
2
,化簡g(x)利用它是偶函數,根據0<a<
π
2
,求a的值.
解答:解:(1)∵f(x)=2sinxcosx+2cos2x-1
=sin2x+cos2x
=
2
sin(2x+
π
4


∴f(x)的最小正周期T=
2

(2)g(x)=f(x+a)=
2
sin[2(x+α)+
π
4
]
=
2
sin(2x+2α+
π
4

g(x)是偶函數,則g(0)=±
2
=
2
sin(2α+
π
4

∴2α+
π
4
=kπ+
π
2
,k∈Z
α=
2
+
π
8
( k∈Z)
∵0<a<
π
2
,∴α=
π
8
點評:本題考查三角函數的周期性及其求法,函數奇偶性的應用,函數y=Asin(ωx+φ)的圖象變換,考查計算能力,邏輯思維能力,是基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=
1
3
ax3+bx(a≠0),若f(3)=3f′(x0),則x0=(  )
A、±1
B、
2
C、±
3
D、2

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•黃州區模擬)已知向量
m
=(cos
x
2
,-1),
n
=(
3
sin
x
2
,cos2
x
2
),設函數f(x)=
m
n
+1.
(1)若x∈[0,
π
2
],f(x)=
11
10
,求cosx的值;
(2)在△ABC中,角A,B,C的對邊分別是a,b,c,且滿足2bcosA≤2c-
3
a,求f(x)的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=2cos(
π
2
x-
π
3
),若對于任意的x∈R,都有f(x1)≤f(x)≤f(x2),則|x1-x2|的最小值為(  )
A、4
B、2
C、1
D、
1
2

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=x2-2ax+2在區間(-2,2)上是增函數,則a的范圍是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=|x+1|+|x+2|+…+|x+2010|+|x-1|+|x-2|+…+|x-2010|(x∈R)四位同學研究得出如下四個命題,其中真命題的有(  )個
①f(x)是偶函數;
②f(x)在(0,+∞)單調遞增;
③不等式f(x)<2010×2011的解集為∅;
④關于實數a的方程f(a2-3a+2)=f(a-1)有無數解.

查看答案和解析>>

同步練習冊答案