求經過三點A
,B(
), C(0,6)的圓的方程,并指出這個圓的半徑和圓心坐標.
科目:高中數學 來源: 題型:解答題
如圖所示,已知以點
為圓心的圓與直線
相切,過點
的動直線
與圓
相交于
兩點,
是
的中點,直線
與
相交于點
.![]()
(1)求圓
的方程;
(2)當
時,求直線
的方程;
(3)
是否為定值?如果是,求出其定值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在平面直角坐標系
中,點
,直線
,設圓
的半徑為,圓心在上.![]()
(1)若圓心
也在直線
上,過點
作圓
的切線,求切線的方程;
(2)若圓
上存在點
,使
,求圓心
的橫坐標
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在直角坐標系xOy中,直線l的參數方程為
(t為參數)在極坐標系(與直角坐標系xOy取相同的長度單位。且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為![]()
(I)求圓C的直角坐標方程;
(Ⅱ)設圓C與直線l交于點A,B.若點P的坐標為(1,2),求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
動圓M過定點A(-
,0),且與定圓A´:(x-
)2+y2=12相切.![]()
(1)求動圓圓心M的軌跡C的方程;
(2)過點P(0,2)的直線l與軌跡C交于不同的兩點E、F,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
己知圓C: (x – 2 )2 + y 2 =" 9," 直線l:x + y = 0.
(1) 求與圓C相切, 且與直線l平行的直線m的方程;
(2) 若直線n與圓C有公共點,且與直線l垂直,求直線n在y軸上的截距b的取值范圍;
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com