中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=-x2+2tx-4在閉區間[0,1]上的最大值記為g(t)
(1)請寫出g(t)的表達式并畫出g(t)的草圖;
(2)若?t∈[0,3],|g(t)|≤m恒成立,求m的取值范圍.
分析:(1)根據所給的二次函數的性質,寫出對于對稱軸所在的區間不同時,對應的函數的最小值,是一個分段函數形式;
(2)由(1)知函數g(t)的解析式,故可得到函數在[0,3]上的值域,進而得到滿足條件的m的取值范圍.
解答:解:(1)∵函數f(x)=-x2+2tx-4=-(x-t)2-4+t2 的對稱軸為 x=t,
當0<t<1時,f(x)在區間[0,1]上的最小值g(t)=f(t)=t2-4;
當 t≤0時,f(x)在區間[0,1]上為減函數,故g(t)=f(0)=-4.
當 t≥1時,f(x)在區間[0,1]上為增函數,故g(t)=f(1)=-5+2t.
綜上可得,f(x)在區間[0,1]上的最小值g(t)=
-4,t≤0
t2-4,0<t<1
2t-5,t≥1

(2)①當t∈[0,1)時,g(t)=t2-4,
故g(t)∈[-4,-3),則|g(t)|∈(3,4];
②當t∈[1,3]時,g(t)=2t-5,
故g(t)∈[-3,1],則|g(t)|∈[1,3];
綜上,對?t∈[0,3],|g(t)|∈[1,4],
則m≥4.
點評:本題看出二次函數的性質,針對于函數的對稱軸是一個變化的值,需要對對稱軸所在的區間進行討論,是一個易錯題,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數f(x)的最小正周期;
(2)若函數y=f(2x+
π
4
)
的圖象關于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)為定義在R上的奇函數,且當x>0時,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時f(x)的表達式;
(2)若關于x的方程f(x)-a=o有解,求實數a的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調遞增區間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區間(1,3)上總不單調,求實數m的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線3x-y+2=0平行,若數列{
1
f(n)
}
的前n項和為Sn,則S2010的值為(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)是定義在區間(-1,1)上的奇函數,且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實數a的取值范圍是
 

查看答案和解析>>

同步練習冊答案