中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=
13
x3-ax2+(a2+2a)x
,a∈R.
(1)當a=-2時,求f(x)在閉區間[-1,1]上的最大值與最小值;
(2)若線段AB:y=2x+3(0≤x≤2)與導函數y=f'(x)的圖象只有一個交點,且交點在線段AB的內部,試求a的取值范圍.
分析:(1)欲求函數的最大值與最小值,通過列表格的方法研究原函數的單調性及在端點處和極值處的函數值的大小;
(2)先將導函數與線段方程聯立,得到一個二次函數g(x),此函數在區間(0,2)內只有一根,即g(0)•g(2)<0,即可求出a的取值范圍.
解答:解:(1)當a=-2時,f(x)=
1
3
x3+2x2
.(1分)
求導得f'(x)=x2+4x=x(x+4).(2分).
令f'(x)=0,解得:x=-4或x=0.(3分)
列表如下:(6分)
x -1 (-1,0) 0 (0,1) 1
f'(x) - 0 +
f(x)
5
3
0
7
3
所以,f(x)在閉區間[-1,1]上的最大值是
7
3
,最小值是0.(7分)
(2)y=f'(x)=x2-2ax+a2+2a.(8分)
聯立方程組
y=x2-2ax+a2+2a
y=2x+3
(9分)
得x2-2(a+1)x+a2+2a-3=0.(10分)
設g(x)=x2-2(a+1)x+a2+2a-3,則方程g(x)=0在區間(0,2)內只有一根,
相當于g(0)•g(2)<0,即(a2+2a-3)•(a2-2a-3)<0,(12分)
解得-3<a<-1或1<a<3.(14分)
點評:考查學生利用導數求函數在閉區間上的最值的能力以及函數和方程的綜合運用能力,對于兩個函數的交點問題,一般是將兩個函數聯立,轉化成方程根的個數問題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(1)、已知函數f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函數f(x)=2cos2x-2
3
sinxcosx
的圖象按向量
m
=(
π
6
,-1)
平移后,得到一個函數g(x)的圖象,求g(x)的解析式.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=(1-
a
x
)ex
,若同時滿足條件:
①?x0∈(0,+∞),x0為f(x)的一個極大值點;
②?x∈(8,+∞),f(x)>0.
則實數a的取值范圍是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
1+lnx
x

(1)如果a>0,函數在區間(a,a+
1
2
)
上存在極值,求實數a的取值范圍;
(2)當x≥1時,不等式f(x)≥
k
x+1
恒成立,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
與f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

定義在D上的函數f(x)如果滿足:對任意x∈D,存在常數M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數,其中M稱為函數f(x)的上界.已知函數f(x)=
1-m•2x1+m•2x

(1)m=1時,求函數f(x)在(-∞,0)上的值域,并判斷f(x)在(-∞,0)上是否為有界函數,請說明理由;
(2)若函數f(x)在[0,1]上是以3為上界的有界函數,求m的取值范圍.

查看答案和解析>>

同步練習冊答案