(本小題滿分15分)(文)如圖,在四棱錐P-ABCD中,底面為直角梯形,AD//BC,
BAD=
,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分別為PC、PB的中點(diǎn).
![]()
(Ⅰ)求證:PB⊥DM;
(Ⅱ) 求CD與平面ADMN所成角的余弦
![]()
解:方法一:
(Ⅰ)因?yàn)镹是PB的中點(diǎn),PA=AB,
所以AN⊥PB。
因?yàn)锳D⊥平面PAB,所以AD⊥PB,
從而PB⊥平面ADMN,
因?yàn)镈M
平面ADMN,
所以PB⊥DM。
(Ⅱ)取AD的中點(diǎn)G,連結(jié)BG、NG,
則BG//CD,
所以BG與平面ADMN所成的角和CD與平面ADMN
所成的角相等。
因?yàn)镻B⊥平面ADMN,
所以∠BGN是BG與平面ADMN所成的角。
在Rt△BGN中,
sin∠BGN=
=
。
故CD與平面ADMN所成的角是arcsin
。
方法二:
![]()
如圖,以A為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系A(chǔ)-xyz,設(shè)BC=1,則
A(0,0,0),P(0,0,2),B(2,0,0),C(2,1,0),M(1,
,1),D(0,2,0)。
(Ⅰ) 因?yàn)?/p>
![]()
=0,所以PB⊥DM。
(Ⅱ) 因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052600431027731733/SYS201205260044501365955881_DA.files/image007.png"> =0,
所以PB⊥AD,
又因?yàn)镻B⊥DM,
所以PB⊥平面ADMN。
因此
的余角即是CD與平面ADMN所成的角
因?yàn)?/p>
=
,
所以CD與平面ADMN所成的角為arcsin
.
【解析】略
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省高三上學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分15分)
已知函數(shù)![]()
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若
,試分別解答以下兩小題.
(ⅰ)若不等式
對(duì)任意的
恒成立,求實(shí)數(shù)
的取值范圍;
(ⅱ)若
是兩個(gè)不相等的正數(shù),且
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三下學(xué)期3月聯(lián)考理科數(shù)學(xué) 題型:解答題
(本小題滿分15分).
已知
、
分別為橢圓
:
的
上、下焦點(diǎn),其中
也是拋物線
:
的焦點(diǎn),
點(diǎn)
是
與
在第二象限的交點(diǎn),且
。
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點(diǎn)P(1,3)和圓
:
,過點(diǎn)P的動(dòng)直線
與圓
相交于不同的兩點(diǎn)A,B,在線段AB取一點(diǎn)Q,滿足:
,
(
且
)。求證:點(diǎn)Q總在某定直線上。
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省高三上學(xué)期第三次月考數(shù)學(xué)文卷 題型:解答題
(本小題滿分15分)
如圖已知,橢圓
的左、右焦點(diǎn)分別為
、
,過
的直線
與橢圓相交于A、B兩點(diǎn)。
(Ⅰ)若
,且
,求橢圓的離心率;
(Ⅱ)若
求
的最大值和最小值。
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆浙江省寧波市高一上學(xué)期期末考試數(shù)學(xué) 題型:解答題
(本小題滿分15分)若函數(shù)
在定義域內(nèi)存在區(qū)間
,滿足
在
上的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052202033078124869/SYS201205220205036875888611_ST.files/image002.png">,則稱這樣的函數(shù)
為“優(yōu)美函數(shù)”.
(Ⅰ)判斷函數(shù)
是否為“優(yōu)美函數(shù)”?若是,求出
;若不是,說明理由;
(Ⅱ)若函數(shù)
為“優(yōu)美函數(shù)”,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年江蘇省高二下學(xué)期期中考試?yán)頂?shù) 題型:解答題
(本小題滿分15分)在5道題中有3道理科題和2道文科題,如果不放回地依次抽取2道題.求:
(1)第1次抽到理科題的概率;
(2)第1次和第2次都抽到理科題的概率;
(3)在第1次抽到理科題的條件下,第2次抽到文科題的概率
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com