已知橢圓C的中心在坐標(biāo)原點(diǎn),短軸長(zhǎng)為4,且有一個(gè)焦點(diǎn)與拋物線
的焦點(diǎn)重合.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知經(jīng)過(guò)定點(diǎn)M(2,0)且斜率不為0的直線
交橢圓C于A、B兩點(diǎn),試問(wèn)在x軸上是否另存在一個(gè)定點(diǎn)P使得
始終平分
?若存在,求出
點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(Ⅰ)
;(Ⅱ)
.
解析試題分析:(Ⅰ)設(shè)橢圓的標(biāo)準(zhǔn)方程為:
,先由已知條件“短軸長(zhǎng)為
”,求得
,再由已知條件“有一個(gè)焦點(diǎn)與拋物線
的焦點(diǎn)重合”,求得
,則
,從而得到橢圓方程;(Ⅱ)設(shè)直線方程為:
,與橢圓方程聯(lián)立方程組求得
(※),假設(shè)存在定點(diǎn)
使得
始終平分
,則有
,將對(duì)應(yīng)點(diǎn)的坐標(biāo)代入,結(jié)合直線方程以及(※)化簡(jiǎn)求得
,從而無(wú)論
如何取值,只要
就可保證式子成立,進(jìn)而得出
點(diǎn)坐標(biāo).
試題解析:(Ⅰ)∵橢圓的短軸長(zhǎng)為
,
∴
,解得
,
又拋物線
的焦點(diǎn)為
,
∴
,則
,
∴所求橢圓方程為:
.
(Ⅱ)設(shè)
:
,代入橢圓方程整理得:![]()
則
,假設(shè)存在定點(diǎn)
使得
始終平分
,
則![]()
![]()
![]()
①,
要使得①對(duì)于
恒成立,則
,
故存在定點(diǎn)
使得
始終平分
,它的坐標(biāo)為
.
考點(diǎn):1.橢圓的標(biāo)準(zhǔn)方程;2.拋物線的性質(zhì);3.根與系數(shù)的關(guān)系
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平面直角坐標(biāo)系
中,已知拋物線
,設(shè)點(diǎn)
,
,
為拋物線
上的動(dòng)點(diǎn)(異于頂點(diǎn)),連結(jié)
并延長(zhǎng)交拋物線
于點(diǎn)
,連結(jié)
、
并分別延長(zhǎng)交拋物線
于點(diǎn)
、
,連結(jié)
,設(shè)
、
的斜率存在且分別為
、
.![]()
(1)若
,
,
,求
;
(2)是否存在與
無(wú)關(guān)的常數(shù)
,是的
恒成立,若存在,請(qǐng)將
用
、
表示出來(lái);若不存在請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線
與直線
相交于A、B 兩點(diǎn).
(1)求證:
;
(2)當(dāng)
的面積等于
時(shí),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
:
.![]()
(1)橢圓
的短軸端點(diǎn)分別為
(如圖),直線
分別與橢圓
交于
兩點(diǎn),其中點(diǎn)
滿足
,且
.
①證明直線
與
軸交點(diǎn)的位置與
無(wú)關(guān);
②若∆
面積是∆
面積的5倍,求
的值;
(2)若圓
:
.
是過(guò)點(diǎn)
的兩條互相垂直的直線,其中
交圓
于
、
兩點(diǎn),
交橢圓
于另一點(diǎn)
.求
面積取最大值時(shí)直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知雙曲線方程2x2-y2=2.
(1)求以A(2,1)為中點(diǎn)的雙曲線的弦所在的直線方程;
(2)過(guò)點(diǎn)(1,1)能否作直線l,使l與雙曲線交于Q1,Q2兩點(diǎn),且Q1,Q2兩點(diǎn)的中點(diǎn)為(1,1)?如果存在,求出它的方程;如果不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知橢圓
的長(zhǎng)軸為AB,過(guò)點(diǎn)B的直線
與![]()
軸垂直,橢圓的離心率
,F為橢圓的左焦點(diǎn),且![]()
![]()
(1)求此橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)P是此橢圓上異于A,B的任意一點(diǎn),
軸,H為垂足,延長(zhǎng)HP到點(diǎn)Q,使得HP=PQ,連接AQ并延長(zhǎng)交直線
于點(diǎn)
,
為
的中點(diǎn),判定直線
與以
為直徑的圓O位置關(guān)系。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為
,點(diǎn)
是點(diǎn)
關(guān)于
軸的對(duì)稱點(diǎn),過(guò)點(diǎn)
的直線交拋物線于
兩點(diǎn)。
(Ⅰ)試問(wèn)在
軸上是否存在不同于點(diǎn)
的一點(diǎn)
,使得
與
軸所在的直線所成的銳角相等,若存在,求出定點(diǎn)
的坐標(biāo),若不存在說(shuō)明理由。
(Ⅱ)若
的面積為
,求向量
的夾角;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
)如圖,橢圓
:
,
、
、
、
為橢圓
的頂點(diǎn) ![]()
(Ⅰ)若橢圓
上的點(diǎn)
到焦點(diǎn)距離的最大值為
,最小值為
,求橢圓方程;
(Ⅱ)已知:直線
相交于
,
兩點(diǎn)(
不是橢圓的左右頂點(diǎn)),并滿足
試研究:直線
是否過(guò)定點(diǎn)? 若過(guò)定點(diǎn),請(qǐng)求出定點(diǎn)坐標(biāo),若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓
,若橢圓
的右頂點(diǎn)為圓
的圓心,離心率為
.
(1)求橢圓
的方程;
(2)若存在直線
,使得直線
與橢圓
分別交于
兩點(diǎn),與圓
分別交于
兩點(diǎn),點(diǎn)
在線段
上,且
,求圓
的半徑
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com