已知:在函數(shù)
的圖象上,以
為切點的切線的傾斜角為
.
(Ⅰ)求
,
的值;
(Ⅱ)是否存在最小的正整數(shù)
,使得不等式
對于
恒成立?如果存在,請求出最小的正整數(shù)
;如果不存在,請說明理由;
(Ⅲ)求證:
(
,
).
(Ⅰ)
.
(Ⅱ)存在最小的正整數(shù)
,使得不等式
對于
恒成立.
(Ⅲ)
(
,
).
解析試題分析:(Ⅰ)
,依題意,得![]()
,即
,
.
2分
∵
, ∴
. 3分
(Ⅱ)令
,得
. 4分
當(dāng)
時,
;
當(dāng)
時,
;
當(dāng)
時,
.
又
,
,
,
.
因此,當(dāng)
時,
. 7分
要使得不等式
對于
恒成立,則
.
所以,存在最小的正整數(shù)
,使得不等式
對于
恒成立. 9分
(Ⅲ)方法一:![]()
![]()
![]()
![]()
![]()
![]()
![]()
. 11分
又∵
,∴
,
.
∴ ![]()
![]()
![]()
. 13分
綜上可得,
(
,
). 14分
方法二:由(Ⅱ)知,函數(shù)
在 [-1,
]上是增函數(shù);在[
,
]上是減函數(shù);在[
,1]上是增函數(shù).
又
,
,
,
.
所以,當(dāng)x∈[-1,1]時,
,即
.
∵
,
∈[-1,1],∴
,
.
∴
. 11分
又∵
,∴
,且函數(shù)
在![]()
![]()
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1)證明函數(shù)
的圖像關(guān)于點
對稱;
(2)若
,求
;
(3)在(2)的條件下,若
,
為數(shù)列
的前
項和,若
對一切
都成立,試求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
據(jù)氣象中心觀察和預(yù)測:發(fā)生于M地的沙塵暴一直向正南方向移動,其移動速度v(km/h)與時間t(h)的函數(shù)圖象如圖所示,過線段OC上一點T(t,0)作橫軸的垂線l,梯形OABC在直線l左側(cè)部分的面積即為t(h)內(nèi)沙塵暴所經(jīng)過的路程s(km).![]()
(1)當(dāng)t=4時,求s的值;
(2)將s隨t變化的規(guī)律用數(shù)學(xué)關(guān)系式表示出來;
(3)若N城位于M地正南方向,且距M地650 km,試判斷這場沙塵暴是否會侵襲到N城,如果會,在沙塵暴發(fā)生后多長時間它將侵襲到N城?如果不會,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
海安縣城有甲,乙兩家乒乓球俱樂部,兩家設(shè)備和服務(wù)都很好,但收費方式不同.甲家每張球臺每小時5元;乙家按月計費,一個月中30小時以內(nèi)(含30小時)每張球臺90元,超過30小時的部分每張球臺每小時2元.小張準(zhǔn)備下個月從這兩家中的一家租一張球臺開展活動,其活動時間不少于15小時,也不超過40小時.
(1)設(shè)在甲家租一張球臺開展活動
小時的收費為
元
,在乙家租一張球臺開展活動
小時的收費為
元
.試求
和
;
(2)問:小張選擇哪家比較合算?為什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1)當(dāng)
時,求函數(shù)
的定義域;
(2)若關(guān)于
的不等式
的解集是
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某車間有50名工人,要完成150件產(chǎn)品的生產(chǎn)任務(wù),每件產(chǎn)品由3個A 型零件和1個B 型零件配套組成.每個工人每小時能加工5個A 型零件或者3個B 型零件,現(xiàn)在把這些工人分成兩組同時工作(分組后人數(shù)不再進(jìn)行調(diào)整),每組加工同一中型號的零件.設(shè)加工A 型零件的工人人數(shù)為x名(x∈N*)
(1)設(shè)完成A 型零件加工所需時間為
小時,寫出
的解析式;
(2)為了在最短時間內(nèi)完成全部生產(chǎn)任務(wù),x應(yīng)取何值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)二次函數(shù)
滿足下列條件:
①當(dāng)
時,
的最小值為0,且
恒成立;
②當(dāng)
時,
恒成立.
(I)求
的值;
(Ⅱ)求
的解析式;
(Ⅲ)求最大的實數(shù)m(m>1),使得存在實數(shù)t,只要當(dāng)
時,就有
成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
建造一間占 地面積為12m²的背面靠墻的豬圈,底面為長方形,豬圈正面的造價為每平方米12元,側(cè)面的造價為每平方米80元,屋頂造價為1120元.如果墻高3m,且不計豬圈背面的費用,問:如何設(shè)計能使豬圈的總 造價最低?最低總造價是多少?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com