中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知f(x)是偶函數,且當0≤x≤π時f(x)=sin
x
2
,又f(x+2π)=f(x),則當π≤x≤2π時,f(x)=
sin
x
2
sin
x
2
分析:利用偶函數的性質可先求[-π,0]上的函數解析式f(x)=-sin
x
2
,設π≤x≤2π⇒-π≤x-2π≤0,結合函數的周期可求.
解答:解:∵當0≤x≤π,f(x)=sin
x
2
且f(x)是偶函數
f(x)= -sin
x
2
(-π≤x≤0)
當π≤x≤2π時,-π≤x-2π≤0
f(x-2π)=-sin
x-2π
2
=sin
x
2

∵f(x+2π)=f(x)
∴當π≤x≤2π時,f(x)=sin
x
2

故答案為:sin
x
2
點評:本題主要考查了運用函數周期性及偶函數的性質求函數的解析式,要注意結論:f(x)=f(x+T)?函數的周期為T.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

8、已知f(x)是偶函數,x∈R,若將f(x)的圖象向右平移一個單位又得到一個奇函數,若f(2)=-1,則f(1)+f(2)+f(3)+…+f(2006)=(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)是偶函數,且f(x)在[0,+∞)上是增函數,如果f(ax+1)≤f(x-2)在x∈[
1
2
,1]
上恒成立,則實數a的取值范圍是(  )
A、[-2,1]
B、[-5,0]
C、[-5,1]
D、[-2,0]

查看答案和解析>>

科目:高中數學 來源: 題型:

16、已知f(x)是偶函數,且在[a,b]上是減函數,試判斷f(x)在[-b,-a]上的單調性,并給出證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)是偶函數,當x≥0時,f(x)=-x2+4x,求當x<0時,f(x)=
-x2-4x
-x2-4x

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•合肥二模)已知f(x)是偶函數,當.x∈[0,
π
2
]時,f(x)=xsinx,若a=f(cos1),b=f(cos2),c=f(cos3),則 a,b,c 的大小關系為(  )

查看答案和解析>>

同步練習冊答案