中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
(2012•山東)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,與雙曲線x2-y2=1的漸近線有四個交點,以這四個交點為頂點的四邊形的面積為16,則橢圓c的方程為(  )
分析:由題意,雙曲線x2-y2=1的漸近線方程為y=±x,根據以這四個交點為頂點的四邊形的面積為16,可得(2,2)在橢圓C:
x2
a2
+
y2
b2
=1.利用e=
3
2
,即可求得橢圓方程.
解答:解:由題意,雙曲線x2-y2=1的漸近線方程為y=±x
∵以這四個交點為頂點的四邊形的面積為16,故邊長為4,
∴(2,2)在橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)上
4
a2
+
4
b2
=1

e=
3
2

a2-b2
a2
=
3
4

∴a2=4b2
∴a2=20,b2=5
∴橢圓方程為:
x2
20
+
y2
5
=1
故選D.
點評:本題考查雙曲線的性質,考查橢圓的標準方程與性質,正確運用雙曲線的性質是關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•山東)已知雙曲線C1
x2
a2
-
y2
b2
=1(a>0,b>0)
的離心率為2.若拋物線C2x2=2py(p>0)的焦點到雙曲線C1的漸近線的距離為2,則拋物線C2的方程為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•山東)已知函數f(x)=
lnx+kex
(k
為常數,e=2.71828…是自然對數的底數),曲線y=f(x)在點(1,f(1))處的切線與x軸平行.
(Ⅰ)求k的值;
(Ⅱ)求f(x)的單調區間;
(Ⅲ)設g(x)=xf'(x),其中f'(x)為f(x)的導函數.證明:對任意x>0,g(x)<1+e-2

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•山東)已知等差數列{an}的前5項和為105,且a10=2a5
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)對任意m∈N*,將數列{an}中不大于72m的項的個數記為bm.求數列{bm}的前m項和Sm

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•山東)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},則(?UA)∪B為(  )

查看答案和解析>>

同步練習冊答案