題目列表(包括答案和解析)
設(shè)橢圓
的左、右頂點分別為
,點
在橢圓上且異于
兩點,
為坐標(biāo)原點.
(Ⅰ)若直線
與
的斜率之積為
,求橢圓的離心率;
(Ⅱ)若
,證明直線
的斜率
滿足![]()
【解析】(1)解:設(shè)點P的坐標(biāo)為
.由題意,有
①
由
,得
,![]()
由
,可得
,代入①并整理得![]()
由于
,故
.于是
,所以橢圓的離心率![]()
(2)證明:(方法一)
依題意,直線OP的方程為
,設(shè)點P的坐標(biāo)為
.
由條件得
消去
并整理得
②
由
,
及
,
得
.
整理得
.而
,于是
,代入②,
整理得![]()
由
,故
,因此
.
所以
.
(方法二)
依題意,直線OP的方程為
,設(shè)點P的坐標(biāo)為
.
由P在橢圓上,有![]()
因為
,
,所以
,即
③
由
,
,得
整理得
.
于是
,代入③,
整理得![]()
解得
,
所以
.
解:(Ⅰ)設(shè)
:![]()
,其半焦距為![]()
.則
:
.
由條件知
,得
.
的右準(zhǔn)線方程為
,即
.
的準(zhǔn)線方程為
.
由條件知
, 所以
,故
,
.
從而
:
,
:
.
(Ⅱ)由題設(shè)知
:
,設(shè)
,
,
,
.
由
,得
,所以
.
而
,由條件
,得
.
由(Ⅰ)得
,
.從而,
:
,即
.
由
,得
.所以
,
.
故
.
已知
是等差數(shù)列,其前n項和為Sn,
是等比數(shù)列,且
,
.
(Ⅰ)求數(shù)列
與
的通項公式;
(Ⅱ)記
,
,證明
(
).
【解析】(1)設(shè)等差數(shù)列
的公差為d,等比數(shù)列
的公比為q.
由
,得
,
,
.
由條件,得方程組
,解得![]()
所以
,
,
.
(2)證明:(方法一)
由(1)得
①
②
由②-①得
![]()
![]()
![]()
而![]()
故
,![]()
(方法二:數(shù)學(xué)歸納法)
① 當(dāng)n=1時,
,
,故等式成立.
② 假設(shè)當(dāng)n=k時等式成立,即
,則當(dāng)n=k+1時,有:
![]()
![]()
![]()
![]()
![]()
![]()
即
,因此n=k+1時等式也成立
由①和②,可知對任意
,
成立.
在△
中,∠
,∠
,∠
的對邊分別是
,且
.
(1)求∠
的大。唬2)若
,
,求
和
的值.
【解析】第一問利用余弦定理得到
第二問
(2) 由條件可得 ![]()
將
代入 得 bc=2
解得 b=1,c=2 或 b=2,c=1 .
已知函數(shù)
=
.
(Ⅰ)當(dāng)
時,求不等式
≥3的解集;
(Ⅱ) 若
≤
的解集包含
,求
的取值范圍.
【命題意圖】本題主要考查含絕對值不等式的解法,是簡單題.
【解析】(Ⅰ)當(dāng)
時,
=
,
當(dāng)
≤2時,由
≥3得
,解得
≤1;
當(dāng)2<
<3時,
≥3,無解;
當(dāng)
≥3時,由
≥3得
≥3,解得
≥8,
∴
≥3的解集為{
|
≤1或
≥8};
(Ⅱ)
≤![]()
![]()
,
當(dāng)
∈[1,2]時,
=
=2,
∴
,有條件得
且
,即
,
故滿足條件的
的取值范圍為[-3,0]
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com