題目列表(包括答案和解析)
在四棱錐
中,
平面
,底面
為矩形,
.
(Ⅰ)當
時,求證:
;
(Ⅱ)若
邊上有且只有一個點
,使得
,求此時二面角
的余弦值.
![]()
【解析】第一位女利用線面垂直的判定定理和性質定理得到。當a=1時,底面ABCD為正方形,![]()
![]()
又因為
,
………………2分
又
,得證。
第二問,建立空間直角坐標系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分
設BQ=m,則Q(1,m,0)(0《m《a》
要使
,只要![]()
所以
,即
………6分
由此可知
時,存在點Q使得![]()
當且僅當m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得![]()
由此知道a=2, 設平面POQ的法向量為![]()
,所以
平面PAD的法向量![]()
則
的大小與二面角A-PD-Q的大小相等所以![]()
因此二面角A-PD-Q的余弦值為![]()
解:(Ⅰ)當
時,底面ABCD為正方形,![]()
![]()
又因為
,
又![]()
………………3分
(Ⅱ) 因為AB,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標系,如圖所示,
![]()
則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分
設BQ=m,則Q(1,m,0)(0《m《a》要使
,只要![]()
所以
,即
………6分
由此可知
時,存在點Q使得![]()
當且僅當m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得
由此知道a=2,
設平面POQ的法向量為![]()
,所以
平面PAD的法向量![]()
則
的大小與二面角A-PD-Q的大小相等所以![]()
因此二面角A-PD-Q的余弦值為![]()
解答題:應寫出文字說明、證明過程或演算步驟
如下圖所示:四面體ABCD中,AB、BC、BD兩兩互相垂直,且AB=BC=2,E是AC中點,異面直線AD與BE所成角的余弦值為
.
(1)求二面角D—AC—B的大小;
(2)求二面角D—AC—B的正切值;
(3)求點B到平面ACD的距離.
如圖所示,空間四邊形ABCD中,AB,BC,BD兩兩垂直,AB=BC=2,E為AC的中點,異面直線AD與BE所成角的大小為arccos
,求二面角D-AC-B的大小.
| ||
| 2 |
| ||
| 2 |
| 3 |
|
|
|
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com