如圖,拋物線(xiàn)
與直線(xiàn)
交于點(diǎn)A 、B,與y軸交于點(diǎn)C.![]()
(1)求點(diǎn)A、B的坐標(biāo);
(2)若點(diǎn)P是直線(xiàn)x=1上一點(diǎn),是否存在△PAB是等腰三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
符合條件的點(diǎn)P共有4個(gè),分別為:P1(1,-8),P1′(1,8),P2(1,-4),P2′(1,12).
解析試題分析:(1)將兩個(gè)函數(shù)解析式聯(lián)立,組成一個(gè)方程組求得x、y的值即可得到兩點(diǎn)的坐標(biāo);
(2)存在符合條件的點(diǎn)P共有3個(gè).因而分三類(lèi)情形探求.
①以AB為腰且頂角為∠A:△P1AB;②以AB為腰且頂角為∠B:△P2AB;③以AB為底,頂角為∠P的△PAB有1個(gè),即△P3AB.綜上得出符合條件的點(diǎn).
試題解析:
解:(1)由題意得:
解得:
或![]()
∴A(-3,0)B(5,4)
(2)存在符合條件的點(diǎn)P共有4個(gè).以下分三類(lèi)情形探求.
由A(-3,0),B(5,4),C(0,4),可得BC∥x軸,BC=AC,
設(shè)直線(xiàn)x=1與x軸交于N,與CB交于M,
過(guò)點(diǎn)B作BQ⊥x軸于Q,易得BQ=4,AQ=8,AN=4,BM=4,
①以AB為腰且頂角為∠A:△P1AB.
∴AB2=AQ2+BQ2=82+42=80,
在Rt△ANP1中,![]()
,
∴
,![]()
②以AB為腰且頂角為∠B:△P2AB.
在Rt△BMP2中, ![]()
,
∴P2(1,-4)或P2′(1,12),
③以AB為底,頂角為∠P的△PAB有1個(gè),即△P3AB.
畫(huà)AB的垂直平分線(xiàn)交拋物線(xiàn)對(duì)稱(chēng)軸于P3,此時(shí)平分線(xiàn)必過(guò)等腰△ABC的頂點(diǎn)C.
過(guò)點(diǎn)P3作P3K垂直y軸,垂足為K,顯然Rt△P3CK∽R(shí)t△BAQ.
∴
.
∵P3K=1,
∴CK=2,于是OK=2,
∴P3(1,2),
而P3(1,2)在線(xiàn)段AB上,構(gòu)不成三角形,舍去.
綜上,符合條件的點(diǎn)P共有4個(gè),分別為:![]()
考點(diǎn):二次函數(shù)綜合題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,直線(xiàn)
交x軸于A點(diǎn),交y軸于B點(diǎn),拋物線(xiàn)
經(jīng)過(guò)點(diǎn)A、B,交x軸于另一點(diǎn)C,頂點(diǎn)為D.![]()
(1)求拋物線(xiàn)的函數(shù)表達(dá)式;
(2)求點(diǎn)C、D兩點(diǎn)的坐標(biāo);
(3)求△ABD的面積;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,一次函數(shù)y=kx+n的圖象與x軸和y軸分別交于點(diǎn)A(6,0)和B(0,
),線(xiàn)段AB的垂直平分線(xiàn)交x軸于點(diǎn)C,交AB于點(diǎn)D.![]()
(1)試確定這個(gè)一次函數(shù)解析式;(3分)
(2)求過(guò)A、B、C三點(diǎn)的拋物線(xiàn)的函數(shù)關(guān)系式;(6分)
(3)請(qǐng)你利用所求拋物線(xiàn)的圖像回答:當(dāng)x取何值時(shí),拋物線(xiàn)中的部分圖像落在x軸的上方? (3分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,拋物線(xiàn)
與
軸相交于點(diǎn)
(﹣1,0)、
(3,0),與
軸相交于點(diǎn)
,點(diǎn)
為線(xiàn)段
上的動(dòng)點(diǎn)(不與
、
重合),過(guò)點(diǎn)
垂直于
軸的直線(xiàn)與拋物線(xiàn)及線(xiàn)段
分別交于點(diǎn)
、
,點(diǎn)
在
軸正半軸上,
=2,連接
、
.![]()
(1)求拋物線(xiàn)的解析式;
(2)當(dāng)四邊形
是平行四邊形時(shí),求點(diǎn)
的坐標(biāo);
(3)過(guò)點(diǎn)
的直線(xiàn)將(2)中的平行四邊形
分成面積相等的兩部分,求這條直線(xiàn)的解析式.(不必說(shuō)明平分平行四邊形面積的理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知拋物線(xiàn)
與直線(xiàn)
交于點(diǎn)O(0,0),A(
,12),點(diǎn)B是拋物線(xiàn)上O,A之間的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)B分別作
軸、
軸的平行線(xiàn)與直線(xiàn)OA交于點(diǎn)C,E.![]()
(1)求拋物線(xiàn)的函數(shù)解析式;
(2)若點(diǎn)C為OA的中點(diǎn),求BC的長(zhǎng);
(3)以BC,BE為邊構(gòu)造矩形BCDE,設(shè)點(diǎn)D的坐標(biāo)為(
,
),求出
,
之間的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,曲線(xiàn)
是函數(shù)
在第一象限內(nèi)的圖象,拋物線(xiàn)是函數(shù)
的圖象.點(diǎn)
(
)在曲線(xiàn)
上,且
都是整數(shù).![]()
(1)求出所有的點(diǎn)
;
(2)在
中任取兩點(diǎn)作直線(xiàn),求所有不同直線(xiàn)的條數(shù);
(3)從(2)的所有直線(xiàn)中任取一條直線(xiàn),求所取直線(xiàn)與拋物線(xiàn)有公共點(diǎn)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(
,0),連結(jié)OA,將線(xiàn)段OA繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)120°,得到線(xiàn)段OB.![]()
(1)請(qǐng)直接寫(xiě)出點(diǎn)B的坐標(biāo);
(2)求經(jīng)過(guò)A、O、B三點(diǎn)的拋物線(xiàn)的解析式;
(3)如果點(diǎn)P是(2)中的拋物線(xiàn)上的動(dòng)點(diǎn),且在x軸的上方,那么△PAB是否有最大面積?若有,求出此時(shí)P點(diǎn)的坐標(biāo)及△PAB的最大面積;若沒(méi)有,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖1,已知拋物線(xiàn)C經(jīng)過(guò)原點(diǎn),對(duì)稱(chēng)軸
與拋物線(xiàn)相交于第三象限的點(diǎn)M,與x軸相交于點(diǎn)N,且
。![]()
(1)求拋物線(xiàn)C的解析式;
(2)將拋物線(xiàn)C繞原點(diǎn)O旋轉(zhuǎn)1800得到拋物線(xiàn)
,拋物線(xiàn)
與x軸的另一交點(diǎn)為A,B為拋物線(xiàn)
上橫坐標(biāo)為2的點(diǎn)。
①若P為線(xiàn)段AB上一動(dòng)點(diǎn),PD⊥y軸于點(diǎn)D,求△APD面積的最大值;
②過(guò)線(xiàn)段OA上的兩點(diǎn)E、F分別作x軸的垂線(xiàn),交折線(xiàn)O-B-A于E1、F1,再分別以線(xiàn)段EE1、FF1為邊作如圖2所示的等邊△AE1E2、等邊△AF1F2,點(diǎn)E以每秒1個(gè)長(zhǎng)度單位的速度從點(diǎn)O向點(diǎn)A運(yùn)動(dòng),點(diǎn)F以每秒1個(gè)長(zhǎng)度單位的速度從點(diǎn)A向點(diǎn)O運(yùn)動(dòng),當(dāng)△AE1E2有一邊與△AF1F2的某一邊在同一直線(xiàn)上時(shí),求時(shí)間t的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知:關(guān)于x的二次函數(shù)
(a>0),點(diǎn)A(n,y1)、B(n+1,y2)、C(n+2,y3)都在這個(gè)二次函數(shù)的圖象上,其中n為正整數(shù).
(1)y1=y2,請(qǐng)說(shuō)明a必為奇數(shù);
(2)設(shè)a=11,求使y1≤y2≤y3成立的所有n的值;
(3)對(duì)于給定的正實(shí)數(shù)a,是否存在n,使△ABC是以AC為底邊的等腰三角形?如果存在,求n的值(用含a的代數(shù)式表示);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com