已知拋物線
,
(1)若
求該拋物線與x軸的交點(diǎn)坐標(biāo);
(2)若
,證明拋物線與x軸有兩個(gè)交點(diǎn);
(3)若
且拋物線在
區(qū)間上的最小值是-3,求b的值.
(1)(-1,0)和(
,0);(2)證明見解析;(3)3或
.
解析試題分析:(1)將a、b、c的值代入,可得出拋物線解析式,從而可求解拋物線與x軸的交點(diǎn)坐標(biāo).
(2)把
代入拋物線解析式,表示出方程的判別式的表達(dá)式,利用配方法及完全平方的非負(fù)性即可判斷出結(jié)論.
(3)
,則拋物線可化為
,其對(duì)稱軸為x=-b,以-1≤x≤2為區(qū)間,討論b的取值,根據(jù)最小值為-3,可得出方程,求出b的值即可.
(1)當(dāng)
時(shí),拋物線為
,
∵方程
的兩個(gè)根為x1=-1,x2=
,
∴該拋物線與x軸交點(diǎn)的坐標(biāo)是(-1,0)和(
,0).
(2)當(dāng)
時(shí),拋物線
,
設(shè)y=0,則
,
∴
,
∴拋物線與x軸有兩個(gè)交點(diǎn).
(3)
,則拋物線可化為
,其對(duì)稱軸為x=-b,
當(dāng)-b<-2時(shí),即b>2,則有拋物線在x=-2時(shí)取最小值為-3,
此時(shí)-3=(-2)2+2×(-2)b+b+2,
解得:b=3,符合題意.
當(dāng)-b>2時(shí),即b<-2,則有拋物線在x=2時(shí)取最小值為-3,
此時(shí)-3=22+2×2b+b+2,
解得:b=
,不合題意,舍去.
當(dāng)-2≤-b≤2時(shí),即-2≤b≤2,則有拋物線在x=-b時(shí)取最小值為-3,
此時(shí)-3=(-b)2+2×(-b)b+b+2,
化簡(jiǎn)得:b2-b-5=0,
解得:b1=
(不合題意,舍去),b2=
.
綜上可得:b=3或b=
.
考點(diǎn):1.拋物線與x軸的交點(diǎn);2.二次函數(shù)的最值;3.分類思想的應(yīng)用.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,二次函數(shù)
的圖象經(jīng)過(
,0)和(
,0)兩點(diǎn).
(1)求此二次函數(shù)的表達(dá)式.
(2)直接寫出當(dāng)
<x<1時(shí),y的取值范圍.
(3)將一次函數(shù) y=(1-m)x+2的圖象向下平移m個(gè)單位后,與二次函數(shù)
圖象交點(diǎn)的橫坐標(biāo)分別是a和b,其中a<2<b,試求m的取值范圍.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線y=ax2+2x+c的頂點(diǎn)為A(―1,―4),與y軸交于點(diǎn)B,與x軸負(fù)半軸交于點(diǎn)C.![]()
(1)求這條拋物線的函數(shù)關(guān)系式;
(2)點(diǎn)P為第三象限內(nèi)拋物線上的一動(dòng)點(diǎn),連接BC、PC、PB,求△BCP面積的最大值,并求出此時(shí)點(diǎn)P的坐標(biāo);
(3)點(diǎn)E為拋物線上的一點(diǎn),點(diǎn)F為x軸上的一點(diǎn),若四邊形ABEF為平行四邊形,請(qǐng)直接寫出所有符合條件的點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線
經(jīng)過A(
,0),C(2,-3)兩點(diǎn),與y軸交于點(diǎn)D,與x軸交于另一點(diǎn)B.
(1)求此拋物線的解析式及頂點(diǎn)坐標(biāo);
(2)若將此拋物線平移,使其頂點(diǎn)為點(diǎn)D,需如何平移?寫出平移后拋物線的解析式;
(3)過點(diǎn)P(m,0)作x軸的垂線(1≤m≤2),分別交平移前后的拋物線于點(diǎn)E,F(xiàn),交直線OC于點(diǎn)G,求證:PF=EG.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系
中,拋物線
與x軸交于點(diǎn)A(-2,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,
),線段AC上有一動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長度的速度向點(diǎn)C移動(dòng),線段AB上有另一個(gè)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒2個(gè)單位長度的速度向點(diǎn)A移動(dòng),兩動(dòng)點(diǎn)同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)求該拋物線的解析式;
(2)在整個(gè)運(yùn)動(dòng)過程中,是否存在某一時(shí)刻,使得以A,P,Q為頂點(diǎn)的三角形與△AOC相似?如果存在,請(qǐng)求出對(duì)應(yīng)的t的值;如果不存在,請(qǐng)說明理由.
(3)在y軸上有兩點(diǎn)M(0,m)和N(0,m+1),若要使得AM+MN+NP的和最小,請(qǐng)直接寫出相應(yīng)的m、t的值以及AM+MN+NP的最小值.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在氣候?qū)θ祟惿鎵毫θ遮吋哟蟮慕裉欤l(fā)展低碳經(jīng)濟(jì),全面實(shí)現(xiàn)低碳生活成為人們的共識(shí),某企業(yè)采用技術(shù)革新,節(jié)能減排,經(jīng)分析前5個(gè)月二氧化碳排放量y(噸)與月份x(月)之間的函數(shù)關(guān)系是y=-2x+50.
(1)隨著二氧化碳排放量的減少,每排放一噸二氧化碳,企業(yè)相應(yīng)獲得的利潤也有所提高,且相應(yīng)獲得的利潤p(萬元)與月份x(月)的函數(shù)關(guān)系如圖所示,那么哪月份,該企業(yè)獲得的月利潤最大?最大月利潤是多少萬元?
(2)受國家政策的鼓勵(lì),該企業(yè)決定從6月份起,每月二氧化碳排放量在上一個(gè)月的基礎(chǔ)上都下降a%,與此同時(shí),每排放一噸二氧化碳,企業(yè)相應(yīng)獲得的利潤在上一個(gè)月的基礎(chǔ)上都增加50%,要使今年6、7月份月利潤的總和是今年5月份月利潤的3倍,求a的值(精確到個(gè)位).
(參考數(shù)據(jù):
=7.14,
=7.21,
=7.28,
=7.35)![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,△ABC的邊AB在x軸上,∠ABC=90°,AB=BC,OA=1,OB=4,拋物
線
經(jīng)過A、C兩點(diǎn).
(1)求拋物線的解析式及其頂點(diǎn)坐標(biāo);
(2)如圖①,點(diǎn)P是拋物線上位于x軸下方的一點(diǎn),點(diǎn)Q與點(diǎn)P關(guān)于拋物線的對(duì)稱軸對(duì)稱,過點(diǎn)P、Q分別向x軸作垂線,垂足為點(diǎn)D、E,記矩形DPQE的周長為d,求d的最大值,并求出使d最大值時(shí)點(diǎn)P的坐標(biāo);
(3)如圖②,點(diǎn)M是拋物線上位于直線AC下方的一點(diǎn),過點(diǎn)M作MF⊥AC于點(diǎn)F,連接MC,作MN∥BC交直線AC于點(diǎn)N,若MN將△MFC的面積分成2:3兩部分,請(qǐng)確定M點(diǎn)的坐標(biāo).![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,點(diǎn)A坐標(biāo)為(-2,0),點(diǎn)B坐標(biāo)為(0,2),點(diǎn)E為線段AB上的動(dòng)點(diǎn)(點(diǎn)E不與點(diǎn)A,B重合),以E為頂點(diǎn)作∠OET=45°,射線ET交線段OB于點(diǎn)F,C為y軸正半軸上一點(diǎn),且OC=AB,拋物線y=
x2+mx+n的圖象經(jīng)過A,C兩點(diǎn).![]()
(1)求此拋物線的函數(shù)表達(dá)式;
(2)求證:∠BEF=∠AOE;
(3)當(dāng)△EOF為等腰三角形時(shí),求此時(shí)點(diǎn)E的坐標(biāo);
(4)在(3)的條件下,當(dāng)直線EF交x軸于點(diǎn)D,P為(1)中拋物線上一動(dòng)點(diǎn),直線PE交x軸于點(diǎn)G,在直線EF上方的拋物線上是否存在一點(diǎn)P,使得△EPF的面積是△EDG面積的(
)倍.若存在,請(qǐng)直接寫出點(diǎn)P坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線
經(jīng)過點(diǎn)
,且與
軸交于點(diǎn)
、點(diǎn)
,若
.![]()
(1)求此拋物線的解析式;
(2)若拋物線的頂點(diǎn)為
,點(diǎn)
是線段
上一動(dòng)點(diǎn)(不與點(diǎn)
重合),
,射線
與線段
交于點(diǎn)
,當(dāng)△
為等腰三角形時(shí),求點(diǎn)
的坐標(biāo).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com