中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
11、已知函數f(x)在R上滿足f(x)=2f(2-x)-x2+8x-8,則曲線y=f(x)在點(1,f(1))處的切線方程是
y=2x-1
分析:先根據f(x)=2f(2-x)-x2+8x-8求出函數f(x)的解析式,然后對函數f(x)進行求導,進而可得到y=f(x)在點(1,f(1))處的切線方程的斜率,最后根據點斜式可求導切線方程.
解答:解:∵f(x)=2f(2-x)-x2+8x-8,
∴f(2-x)=2f(x)-(2-x)2+8(2-x)-8.
∴f(2-x)=2f(x)-x2+4x-4+16-8x-8.
將f(2-x)代入f(x)=2f(2-x)-x2+8x-8
得f(x)=4f(x)-2x2-8x+8-x2+8x-8.
∴f(x)=x2,f'(x)=2x
∴y=f(x)在(1,f(1))處的切線斜率為y′=2.
∴函數y=f(x)在(1,f(1))處的切線方程為y-1=2(x-1),
即y=2x-1.
答案y=2x-1
點評:本題主要考查求函數解析式的方法和函數的求導法則以及導數的幾何意義.函數在某點的導數值等于該點的切線方程的斜率.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

1、已知函數f(x)在R上滿足f(x)=2f(2-x)-x2+8x-8,則曲線y=f(x)在點(1,f(1))處的切線方程是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)在R上滿足y=f(x)=2f(2-x)+ex-1+x2,則曲線y=f(x)在點(1,f(1))處的切線方程是(  )
A、2x-y-1=0B、x-y-3=0C、3x-y-2=0D、2x+y-3=0

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)在R上滿足2f(x)+f(1-x)=3x2-2x+1,則曲線y=f(x)在點(1,f(1))處的切線方程是
2x-y-1=0
2x-y-1=0

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)在R上有定義,對任意實數a>0和任意實數x都有f(ax)=a﹒f(x).
(1)證明:f(0)=0
(2)若f(1)=1,求g(x)=
1f(x)
+f(x).(x>0)
的極值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)在R上可導,函數F(x)=f(x2-4)+f(4-x2),則F′(2)=
 

查看答案和解析>>

同步練習冊答案