中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
(2013•懷化二模)已知數列{an}滿足:a1=1,an-an-1+2anan-1=0,(n∈N*,n>1)
(Ⅰ) 求證數列{
1
an
}
是等差數列并求{an}的通項公式;
(Ⅱ) 設bn=anan+1,求證:b1+b2+…+bn
1
2
分析:(Ⅰ)先確定數列{
1
an
}
是以1為首項,2為公差的等差數列,可求{an}的通項公式;
(Ⅱ)確定數列{bn}的通項,利用裂項法求數列的和,再用放縮法,即可證得結論.
解答:證明:(Ⅰ)an-an-1+2anan-1=0兩邊同除以anan-1得:
1
an
-
1
an-1
=2

所以數列{
1
an
}
是以1為首項,2為公差的等差數列…(3分)
于是
1
an
=2n-1
an=
1
2n-1
,(n∈N*)
…(6分)
(Ⅱ)由(Ⅰ),bn=
1
(2n-1)(2n+1)

b1+b2+…+bn=
1
1×3
+
1
3×5
+…+
1
(2n-1)(2n+1)

=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1
)
=
1
2
(1-
1
2n+1
)<
1
2
…(12分)
點評:本題考查數列的通項與求和,考查裂項法的運用,確定數列的通項是關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•懷化二模)已知函數f(x)=x2+lg(x+
1+x2
)
,且f(2)=a,則f(-2)=(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•懷化二模)已知m,n為不同的直線,α,β為不同的平面,給出下列四個命題:
①若m⊥α,n?α,則m⊥n;       
②若m⊥α,α⊥β,則m∥β;
③若m?α,n?α,m∥β,n∥β,則α∥β;
④若α⊥β,α∩β=m,n?α,n⊥m,則n⊥β.
其中所有正確命題的序號是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•懷化二模)已知角α,β的頂點在坐標原點,始邊與x軸的正半軸重合,α,β∈(0,π),角β的終邊與單位圓交點的橫坐標是-
5
13
,角α+β的終邊與單位圓交點的縱坐標是
3
5
,則cosα=(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•懷化二模)已知一條直線的參數方程是
x=1+
1
2
t
y=-5+
3
2
t
(t為參數),另一條直線的方程是x-y-2
3
=0
,則兩直線的交點與點(1,-5)間的距離是
4
3
4
3

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•懷化二模)已知f(x)=2ax-
b
x
+lnx
在x=1與x=
1
2
處都取得極值.
(Ⅰ) 求a,b的值;
(Ⅱ)設函數g(x)=x2-2mx+m,若對任意的x1∈[
1
2
,2]
,總存在x2∈[
1
2
,2]
,使得、g(x1)≥f(x2)-lnx2,求實數m的取值范圍.

查看答案和解析>>

同步練習冊答案