中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
在△ABC中,BC=1,∠B=2∠A,則
AC
cosA
的值等于(  )
分析:由正弦定理列出關系式,將BC的長及∠B=2∠A代入,利用二倍角的正弦函數公式化簡,整理后即可求出所求式子的值.
解答:解:∵BC=1,∠B=2∠A,
∴由正弦定理
BC
sinA
=
AC
sinB
得:
1
sinA
=
AC
sin2A
=
AC
2sinAcosA

AC
cosA
=2.
故選A
點評:此題考查了正弦定理,以及二倍角的正弦函數公式,熟練掌握定理及公式是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在△ABC中,|BC|=2|AB|,∠ABC=120°,則以A,B為焦點且過點C的雙曲線的離心率為(  )
A、
7
+2
3
B、
6
+2
2
C、
7
-2
D、
3
+2

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,(
BC
+
BA
)•
AC
=|
AC
|2
BA
BC
=3
|
BC
|=2
,則△ABC的面積是(  )
A、
3
2
B、
2
2
C、
1
2
D、1

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,BC=6,BC邊上的高為2,則
AB
AC
的最小值為
-5
-5

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•石景山區二模)在△ABC中,BC=2,AC=
7
B=
π
3
,則AB=
3
3
;△ABC的面積是
3
3
2
3
3
2

查看答案和解析>>

同步練習冊答案