已知函數(shù)f (x)在R上滿足f (x)=2·f (2-x)-x2+8x-8,則f
(2)=
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
(本小
題滿分12分)
設(shè)![]()
為奇函數(shù),其圖象在點(diǎn)![]()
處的切線與直線
垂直,導(dǎo)函數(shù)
的最小值為![]()
.
求
的值
.求函數(shù)
的單調(diào)遞增
區(qū)間,極大值和極小值,并求函數(shù)
在
上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(
).
(Ⅰ)若函數(shù)
在定義域內(nèi)單調(diào)遞增,求實(shí)數(shù)
的取值范圍;
(Ⅱ)若
,且關(guān)于
的方程
在
上恰有兩個(gè)不等的實(shí)根,求實(shí)數(shù)
的取值范圍;
(Ⅲ)設(shè)各項(xiàng)為正數(shù)的數(shù)列
滿足
,
(
),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
對(duì)于三次函數(shù)![]()
。
定義:(1)設(shè)
是函數(shù)
的導(dǎo)數(shù)
的導(dǎo)數(shù),若方程
有實(shí)數(shù)解
,則稱點(diǎn)
為函數(shù)
的“拐點(diǎn)”;
定義:(2)設(shè)
為常數(shù),若定義在
上的函數(shù)
對(duì)于定義域內(nèi)的一切實(shí)數(shù)
,都有
成立,則函數(shù)
的圖象關(guān)于點(diǎn)
對(duì)稱。
己知
,請(qǐng)回答下列問題:
(1)求函數(shù)
的“拐點(diǎn)”
的坐標(biāo)
(2)檢驗(yàn)函數(shù)
的圖象是否關(guān)于“拐點(diǎn)”
對(duì)稱,對(duì)于任意的三次函數(shù)寫出一個(gè)有關(guān)“拐點(diǎn)”的結(jié)論(不必證明)
(3)寫出一個(gè)三次函數(shù)
,使得它的“拐點(diǎn)”是
(不要過程)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
若函數(shù)
在區(qū)間(
)上既不是單調(diào)遞增函數(shù),也不是單調(diào)遞減函數(shù),則實(shí)數(shù)a的取值范圍是______________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
已知函數(shù)
圖像在點(diǎn)
的
切線與
圖像在點(diǎn)M處的切線平行,則點(diǎn)M的坐標(biāo)為 。
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com