中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
定義:將一個數列中部分項按原來的先后次序排列所成的一個新數列稱為原數列的一個子數列.
已知無窮等比數列{an}的首項、公比均為
1
2

(1)試求無窮等比子數列{a3k-1}(k∈N*)各項的和;
(2)是否存在數列{an}的一個無窮等比子數列,使得它各項的和為
1
7
?若存在,求出滿足條件的子數列的通項公式;若不存在,請說明理由;
(3)試設計一個數學問題,研究:是否存在數列{an}的兩個不同的無窮等比子數列,使得其各項和之間滿足某種關系.請寫出你的問題以及問題的研究過程和研究結論.
(1)依條件得:a3k-1=
1
23k-1
(k∈N*)

∴無窮等比子數列{a3k-1}的首項為a2=
1
22
,公比為
1
23

則無窮等比數列{a3k-1}各項的和為:
a2
1-
1
23
=
1
22
7
8
=
2
7

(2)設此子數列的首項為a1,公比為q,由條件得:0<q≤
1
2

1
2
≤1-q<1
,即 1<
1
1-q
≤2

a1=
1
7
(1-q)∈[
1
14
 ,
1
7
)

而 a1=
1
2m
 (m∈N*)

則 a1=
1
8
 ,q=
1
8

所以,滿足條件的無窮等比子數列存在且唯一,它的首項、公比均為
1
8

其通項公式為an=(
1
8
)n
,n∈N*
(3)問題:是否存在數列{an}的兩個不同的無窮等比子數列,使得它們各項的和互為倒數?若存在,求出所有滿足條件的子數列;若不存在,說明理由.
假設存在原數列的兩個不同的無窮等比子數列,使它們的各項和之積為1.設這兩個子數列的首項、公比分別為
1
2a
1
2m
1
2b
1
2n
,其中a、b、m、n∈N*且a≠b或m≠n,則
1
2a
1-
1
2m
1
2b
1-
1
2n
=1?
2(m+n)-(a+b)
(2m-1)(2n-1)
=1?2(m+n)-(a+b)=(2m-1)(2n-1)

因為等式左邊或為偶數,或為一個分數,而等式右邊為兩個奇數的乘積,還是一個奇數.
故等式不可能成立,即假設錯誤,
所以這樣的兩個子數列不存在.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2008•普陀區一模)定義:將一個數列中部分項按原來的先后次序排列所成的一個新數列稱為原數列的一個子數列.
已知無窮等比數列{an}的首項、公比均為
1
2

(1)試求無窮等比子數列{a3k-1}(k∈N*)各項的和;
(2)是否存在數列{an}的一個無窮等比子數列,使得它各項的和為
1
7
?若存在,求出滿足條件的子數列的通項公式;若不存在,請說明理由;
(3)試設計一個數學問題,研究:是否存在數列{an}的兩個不同的無窮等比子數列,使得其各項和之間滿足某種關系.請寫出你的問題以及問題的研究過程和研究結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

(09年雅禮中學月考理)(13分)

定義:將一個數列中部分項按原來的先后次序排列所成的一個新數列稱為原數列的一個子數列.已知無窮等比數列的首項和公比均為

   (1)試求無窮等比子數列)各項的和;

   (2)已知數列的一個無窮等比子數列各項的和為,求這個子數列的通項公式;

   (3)證明:在數列的所有子數列中,不存在兩個不同的無窮等比子數列,使得它們各項的和相等.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

定義:將一個數列中部分項按原來的先后次序排列所成的一個新數列稱為原數列的一個子數列.
已知無窮等比數列{an}的首項、公比均為數學公式
(1)試求無窮等比子數列{a3k-1}(k∈N*)各項的和;
(2)是否存在數列{an}的一個無窮等比子數列,使得它各項的和為數學公式?若存在,求出滿足條件的子數列的通項公式;若不存在,請說明理由;
(3)試設計一個數學問題,研究:是否存在數列{an}的兩個不同的無窮等比子數列,使得其各項和之間滿足某種關系.請寫出你的問題以及問題的研究過程和研究結論.

查看答案和解析>>

科目:高中數學 來源:2009年上海市普陀區高考數學一模試卷(理科)(解析版) 題型:解答題

定義:將一個數列中部分項按原來的先后次序排列所成的一個新數列稱為原數列的一個子數列.
已知無窮等比數列{an}的首項、公比均為
(1)試求無窮等比子數列{a3k-1}(k∈N*)各項的和;
(2)是否存在數列{an}的一個無窮等比子數列,使得它各項的和為?若存在,求出滿足條件的子數列的通項公式;若不存在,請說明理由;
(3)試設計一個數學問題,研究:是否存在數列{an}的兩個不同的無窮等比子數列,使得其各項和之間滿足某種關系.請寫出你的問題以及問題的研究過程和研究結論.

查看答案和解析>>

科目:高中數學 來源:2009年上海市普陀區高考數學一模試卷(文科)(解析版) 題型:解答題

定義:將一個數列中部分項按原來的先后次序排列所成的一個新數列稱為原數列的一個子數列.
已知無窮等比數列{an}的首項、公比均為
(1)試求無窮等比子數列{a3k-1}(k∈N*)各項的和;
(2)是否存在數列{an}的一個無窮等比子數列,使得它各項的和為?若存在,求出滿足條件的子數列的通項公式;若不存在,請說明理由;
(3)試設計一個數學問題,研究:是否存在數列{an}的兩個不同的無窮等比子數列,使得其各項和之間滿足某種關系.請寫出你的問題以及問題的研究過程和研究結論.

查看答案和解析>>

同步練習冊答案