已知橢圓
的對稱軸為坐標(biāo)軸,焦點(diǎn)是(0,
),(0,
),又點(diǎn)![]()
在橢圓
上.
(1)求橢圓
的方程;
(2)已知直線
的斜率為
,若直線
與橢圓
交于
、
兩點(diǎn),求
面積的最大值.
(1)
(2)![]()
解析試題分析:解: (Ⅰ)由已知拋物線的焦點(diǎn)為
,故設(shè)橢圓方程為
.
將點(diǎn)
代入方程得
,整理得
,
解得
或
(舍).故所求橢圓方程為
.
(Ⅱ)設(shè)直線
的方程為
,設(shè)![]()
代入橢圓方程并化簡得
,
由
,可得
①.
由
,
故
.
又點(diǎn)
到
的距離為
,
故
,
當(dāng)且僅當(dāng)
,即
時取等號(滿足①式)
所以
面積的最大值為
.
考點(diǎn):橢圓的方程
點(diǎn)評:關(guān)于曲線的大題,第一問一般是求出曲線的方程,第二問常與直線結(jié)合起來,當(dāng)涉及到交點(diǎn)時,常用到根與系數(shù)的關(guān)系式:
(
)。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
平面直角坐標(biāo)系xOy中,過橢圓M:
右焦點(diǎn)的直線
交
于A,B兩點(diǎn),P為AB的中點(diǎn),且OP的斜率為
.
(Ι)求M的方程;
(Ⅱ)C,D為M上的兩點(diǎn),若四邊形ACBD的對角線CD⊥AB,求四邊形面積的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系曲線C的極坐標(biāo)方程為cos(
)=1,M,N分別為C與x軸,y軸的交點(diǎn)。
(I)寫出C的直角坐標(biāo)方程,并求M,N的極坐標(biāo);
(II)設(shè)MN的中點(diǎn)為P,求直線OP的極坐標(biāo)方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,圓
與離心率為
的橢圓
(
)相切于點(diǎn)
.![]()
(Ⅰ)求橢圓的方程;
(Ⅱ)過點(diǎn)
引兩條互相垂直的兩直線
、
與兩曲線分別交于點(diǎn)
、
與點(diǎn)
、
(均不重合).
(ⅰ)若
為橢圓上任一點(diǎn),記點(diǎn)
到兩直線的距離分別為
、
,求
的最大值;
(ⅱ)若
,求
與
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)P(4, 4),圓C:
與橢圓E:
有一個公共點(diǎn)A(3,1),F(xiàn)1、F2分別是橢圓的左、右焦點(diǎn),直線PF1與圓C相切.![]()
(Ⅰ)求m的值與橢圓E的方程;(Ⅱ)設(shè)Q為橢圓E上的一個動點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系中,射線OA: x-y=0(x≥0),
OB: x+2y=0(x≥0),過點(diǎn)P(1,0)作直線分別交射線OA、OB于A、B兩點(diǎn).
(1)當(dāng)AB中點(diǎn)為P時,求直線AB的方程;
(2)當(dāng)AB中點(diǎn)在直線
上時,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知焦距為
的雙曲線的焦點(diǎn)在x軸上,且過點(diǎn)P
.
(Ⅰ)求該雙曲線方程 ;
(Ⅱ)若直線m經(jīng)過該雙曲線的右焦點(diǎn)且斜率為1,求直線m被雙曲線截得的弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的中心在原點(diǎn),焦點(diǎn)在
軸上.若橢圓上的點(diǎn)
到焦點(diǎn)
、
的距離之和等于4.
(1)寫出橢圓
的方程和焦點(diǎn)坐標(biāo);
(2)過點(diǎn)
的直線與橢圓交于兩點(diǎn)
、
,當(dāng)
的面積取得最大值時,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
,
,圓
,一動圓在
軸右側(cè)與
軸相切,同時與圓
相外切,此動圓的圓心軌跡為曲線C,曲線E是以
,
為焦點(diǎn)的橢圓。
(1)求曲線C的方程;
(2)設(shè)曲線C與曲線E相交于第一象限點(diǎn)P,且
,求曲線E的標(biāo)準(zhǔn)方程;
(3)在(1)、(2)的條件下,直線
與橢圓E相交于A,B兩點(diǎn),若AB的中點(diǎn)M在曲線C上,求直線
的斜率
的取值范圍。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com