在直角坐標系xOy中,以O(shè)為極點,x正半軸為極軸建立極坐標系曲線C的極坐標方程為cos(
)=1,M,N分別為C與x軸,y軸的交點。
(I)寫出C的直角坐標方程,并求M,N的極坐標;
(II)設(shè)MN的中點為P,求直線OP的極坐標方程。
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
,
分別是橢圓
的左、右焦點
,
關(guān)于直線
的對稱點是圓
的一條直徑的兩個端點。
(Ⅰ)求圓
的方程;
(Ⅱ)設(shè)過點
的直線
被橢圓
和圓
所截得的弦長分別為
,
。當
最大時,求直線
的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知兩點
及
,點
在以
、
為焦點的橢圓
上,且
、
、
構(gòu)成等差數(shù)列.![]()
(1)求橢圓
的方程;
(2)如圖,動直線
與橢圓
有且僅有一個公共點,點
是直線上的兩點,且
,
. 求四邊形
面積
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
:
的右焦點
在圓
上,直線
交橢圓于
、
兩點.
(Ⅰ) 求橢圓
的方程;
(Ⅱ) 若OM⊥ON(
為坐標原點),求
的值;
(Ⅲ)
設(shè)點
關(guān)于
軸的對稱點為
(
與
不重合),且直線![]()
與
軸交于點
,試問
的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的左、右焦點分別是
,Q是橢圓外的動點,滿足
.點
是線段
與該橢圓的交點,點T是
的中點.![]()
(Ⅰ)設(shè)
為點
的橫坐標,證明
;
(Ⅱ)求點T的軌跡
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知:圓
過橢圓
的兩焦點,與橢圓有且僅有兩個公共點:直線
與圓
相切 ,與橢圓
相交于A,B兩點記
(Ⅰ)求橢圓的方程;
(Ⅱ)求
的取值范圍;
(Ⅲ)求
的面積S的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的對稱軸為坐標軸,焦點是(0,
),(0,
),又點![]()
在橢圓
上.
(1)求橢圓
的方程;
(2)已知直線
的斜率為
,若直線
與橢圓
交于
、
兩點,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓
過點
,離心率為
,左、右焦點分別為
、
.點
為直線
上且不在
軸上的任意一點,直線
和
與橢圓的交點分別為
、
和
、
,
為坐標原點.設(shè)直線
、
的斜率分別為
、
.![]()
(i)證明:
;
(ii)問直線
上是否存在點
,使得直線
、
、
、
的斜率
、
、
、
滿足
?若存在,求出所有滿足條件的點
的坐標;若不存在,說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com