已知函數(shù)
上為增函數(shù),且
,
,
.
(1)求
的值;
(2)當
時,求函數(shù)
的單調(diào)區(qū)間和極值;
(3)若在
上至少存在一個
,使得
成立,求
的取值范圍.
(1)
;
(2)函數(shù)的單調(diào)遞增區(qū)間是
,遞減區(qū)間為
,極大值
;
(3)
的取值范圍為
.
解析試題分析:(1)利用
科目:高中數(shù)學(xué)
來源:
題型:解答題
設(shè)函數(shù)
科目:高中數(shù)學(xué)
來源:
題型:解答題
函數(shù)
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知定義在
科目:高中數(shù)學(xué)
來源:
題型:解答題
設(shè)函數(shù)
科目:高中數(shù)學(xué)
來源:
題型:解答題
設(shè)
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表 湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
在
上恒成立,
轉(zhuǎn)化成
在
上恒成立,從而只需
,
即
,結(jié)合正弦函數(shù)的有界性,得到
,求得
;
(2)研究函數(shù)的單調(diào)性、極值,一般遵循“求導(dǎo)數(shù),求駐點,討論區(qū)間導(dǎo)數(shù)值的正負,確定單調(diào)性及極值”,利用“表解法”,往往形象直觀,易于理解.
(3)構(gòu)造函數(shù)
,
討論
,
時,
的取值情況,根據(jù)
在
上恒成立,得到
在
上單調(diào)遞增,利用
大于0,求得
.
試題解析:(1)由已知
在
上恒成立,
即
,∵
,∴
,
故
在
上恒成立,只需
,
即
,∴只有
,由
知
; 4分
(2)∵
,∴
,
,
∴
,
令
,則![]()
,
∴
,
和
的變化情況如下表:![]()
![]()
![]()
![]()
![]()
+ 0 ![]()
![]()
![]()
極大值 ![]()
![]()
![]()
1加1閱讀好卷系列答案
專項復(fù)習(xí)訓(xùn)練系列答案
初中語文教與學(xué)閱讀系列答案
閱讀快車系列答案
完形填空與閱讀理解周秘計劃系列答案
英語閱讀理解150篇系列答案
奔騰英語系列答案
標準閱讀系列答案
53English系列答案
考綱強化閱讀系列答案
![]()
(1)若
是函數(shù)
的極值點,
和
是函數(shù)
的兩個不同零點,且
,求
;
(2)若對任意
,都存在
(
為自然對數(shù)的底數(shù)),使得
成立,求實數(shù)
的取值范圍.
,過曲線
上的點
的切線方程為
.
(1)若
在
時有極值,求
的表達式;
(2)在(1)的條件下,求
在[-3,1]上的最大值;
(3)若函數(shù)
在區(qū)間[-2,1]上單調(diào)遞增,求實數(shù)b的取值范圍.
上的函數(shù)
,其中
為常數(shù).
(1)當
是函數(shù)
的一個極值點,求
的值;
(2)若函數(shù)
在區(qū)間
上是增函數(shù),求實數(shù)
的取值范圍;
(3)當
時,若
,在
處取得最大值,求實數(shù)
的取值范圍.
,
.
(1)討論函數(shù)
的單調(diào)性;
(2)若存在
,使得
成立,求滿足上述條件的最大整數(shù)
;
(3)如果對任意的
,都有
成立,求實數(shù)
的取值范圍.
的導(dǎo)數(shù)為
,若函數(shù)
的圖象關(guān)于直線
對稱,且函數(shù)
在
處取得極值.
(I)求實數(shù)
的值;
(II)求函數(shù)
的單調(diào)區(qū)間.
.
(I)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若
,試解答下列兩小題.
(i)若不等式
對任意的
恒成立,求實數(shù)
的取值范圍;
(ii)若
是兩個不相等的正數(shù),且以
,求證:
.
,
為實數(shù))有極值,且在
處的切線與直線
平行.
(Ⅰ)求實數(shù)a的取值范圍;
(Ⅱ)是否存在實數(shù)a,使得函數(shù)
的極小值為1,若存在,求出實數(shù)a的值;若不存在,請說明理由;
(Ⅲ)設(shè)函數(shù)
試判斷函數(shù)
在
上的符號,并證明:
(
).
版權(quán)聲明:本站所有文章,圖片來源于網(wǎng)絡(luò),著作權(quán)及版權(quán)歸原作者所有,轉(zhuǎn)載無意侵犯版權(quán),如有侵權(quán),請作者速來函告知,我們將盡快處理,聯(lián)系qq:3310059649。
ICP備案序號: 滬ICP備07509807號-10 鄂公網(wǎng)安備42018502000812號