已知兩點(diǎn)
及
,點(diǎn)
在以
、
為焦點(diǎn)的橢圓
上,且
、
、
構(gòu)成等差數(shù)列.
(Ⅰ)求橢圓
的方程;
(Ⅱ)如圖,動(dòng)直線
與橢圓
有且僅有一個(gè)公共點(diǎn),
點(diǎn)
是直線
上的兩點(diǎn),且
,
.
求四邊形
面積
的最大值.
![]()
解:(1)依題意,設(shè)橢圓
的方程為
.
![]()
構(gòu)成等差數(shù)列,
![]()
,
.
又
,
.
橢圓
的方程為
. …………………………………………………4分
(2) 將直線
的方程
代入橢圓
的方程
中,得
. ……………………5分
由直線
與橢圓
僅有一個(gè)公共點(diǎn)知,
,
化簡得:
.
設(shè)
,
, …………………………8分
(法一)當(dāng)
時(shí),設(shè)直線
的傾斜角為
,則
,
![]()
,
![]()
,……10分
![]()
,
當(dāng)
時(shí),
,
,
.
當(dāng)
時(shí),四邊形
是矩形,
.
所以四邊形
面積
的最大值為
. …………………………12分
(法二)![]()
,
.
![]()
.
四邊形
的面積![]()
, ………10分
. …………………………………………12分
當(dāng)且僅當(dāng)
時(shí),
,故
.
所以四邊形
的面積
的最大值為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年云南省部分名校高三12月聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知兩點(diǎn)
及
,點(diǎn)
在以
、
為焦點(diǎn)的橢圓
上,且
、
、
構(gòu)成等差數(shù)列.
(Ⅰ)求橢圓
的方程;
(Ⅱ)如圖,動(dòng)直線
與橢圓
有且僅有一個(gè)公共點(diǎn),點(diǎn)
是直線
上的兩點(diǎn),且
,
.
求四邊形
面積
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年云南省部分名校高三12月聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知兩點(diǎn)
及
,點(diǎn)
在以
、
為焦點(diǎn)的橢圓
上,且
、
、
構(gòu)成等差數(shù)列.
(Ⅰ)求橢圓
的方程;
(Ⅱ)如圖,動(dòng)直線
與橢圓
有且僅有一個(gè)公共點(diǎn),點(diǎn)
是直線
上的兩點(diǎn),且
,
.
求四邊形
面積
的最大值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省寧波市鄞州區(qū)高三5月適應(yīng)性考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知兩點(diǎn)
及
,點(diǎn)
在以
、
為焦點(diǎn)的橢圓
上,且
、
、
構(gòu)成等差數(shù)列.
![]()
(1)求橢圓
的方程;
(2)如圖,動(dòng)直線
與橢圓
有且僅有一個(gè)公共點(diǎn),點(diǎn)
是直線上的兩點(diǎn),且
,
. 求四邊形
面積
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西新余第一中學(xué)高三第七次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知兩點(diǎn)
及
,點(diǎn)
在以
、
為焦點(diǎn)的橢圓
上,且
、
、
構(gòu)成等差數(shù)列.
![]()
(1)求橢圓
的方程;
(2)如圖7,動(dòng)直線
與橢圓
有且僅有一個(gè)公共點(diǎn),點(diǎn)
是直線
上的兩點(diǎn),且
,
. 求四邊形
面積
的最大值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com