已知橢圓
:
(
)過點
,其左、右焦點分別為
,且
.
(1)求橢圓
的方程;
(2)若
是直線
上的兩個動點,且
,則以
為直徑的圓
是否過定點?請說明理由.
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線
的頂點為坐標(biāo)原點
,焦點
在
軸上,準(zhǔn)線
與圓
相切.![]()
(Ⅰ)求拋物線
的方程;
(Ⅱ)已知直線
和拋物線
交于點
,命題P:“若直線
過定點
,則
”,請判斷命題P的真假,并證明。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知過拋物線
的焦點,斜率為
的直線交拋物線于![]()
(
)兩點,且
.
(1)求該拋物線的方程;
(2)
為坐標(biāo)原點,
為拋物線上一點,若
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知A(
,
),B(
,
)是函數(shù)
的圖象上的任意兩點(可以重合),點M在直線
上,且
.
(1)求
+
的值及
+
的值
(2)已知
,當(dāng)
時,![]()
+
+
+
,求
;
(3)在(2)的條件下,設(shè)
=
,
為數(shù)列{
}的前
項和,若存在正整數(shù)
、
,
使得不等式
成立,求
和
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線
與橢圓
有相同的焦點,點
、
分別是橢圓的右、右頂點,若橢圓經(jīng)過點
.
(1)求橢圓的方程;
(2)已知
是橢圓的右焦點,以
為直徑的圓記為
,過點
引圓
的切線,求此切線的方程;
(3)設(shè)
為直線
上的點,
是圓
上的任意一點,是否存在定點
,使得
?若存在,求出定點
的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,線段
的兩個端點
、
分別分別在
軸、
軸上滑動,
,點
是
上一點,且
,點
隨線段
的運動而變化.![]()
(1)求點
的軌跡方程;
(2)設(shè)
為點
的軌跡的左焦點,
為右焦點,過
的直線交
的軌跡于
兩點,求
的最大值,并求此時直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,F(xiàn)1,F(xiàn)2是離心率為
的橢圓
C:
(a>b>0)的左、右焦點,直線
:x=-
將線段F1F2分成兩段,其長度之比為1 : 3.設(shè)A,B是C上的兩個動點,線段AB的中點M在直線l上,線段AB的中垂線與C交于P,Q兩點.![]()
(Ⅰ) 求橢圓C的方程;
(Ⅱ) 是否存在點M,使以PQ為直徑的圓經(jīng)過點F2,若存在,求出M點坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某同學(xué)用《幾何畫板》研究拋物線的性質(zhì):打開《幾何畫板》軟件,繪制某拋物線
,在拋物線上任意畫一個點
,度量點
的坐標(biāo)
,如圖.![]()
(Ⅰ)拖動點
,發(fā)現(xiàn)當(dāng)
時,
,試求拋物線
的方程;
(Ⅱ)設(shè)拋物線
的頂點為
,焦點為
,構(gòu)造直線
交拋物線
于不同兩點
、
,構(gòu)造直線
、
分別交準(zhǔn)線于
、
兩點,構(gòu)造直線
、
.經(jīng)觀察得:沿著拋物線
,無論怎樣拖動點
,恒有![]()
.請你證明這一結(jié)論.
(Ⅲ)為進(jìn)一步研究該拋物線
的性質(zhì),某同學(xué)進(jìn)行了下面的嘗試:在(Ⅱ)中,把“焦點
”改變?yōu)槠渌岸c![]()
”,其余條件不變,發(fā)現(xiàn)“
與
不再平行”.是否可以適當(dāng)更改(Ⅱ)中的其它條件,使得仍有“![]()
”成立?如果可以,請寫出相應(yīng)的正確命題;否則,說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com