已知![]()
).
(1)若
時,求函數(shù)
在點(diǎn)
處的切線方程;
(2)若函數(shù)
在
上是減函數(shù),求實(shí)數(shù)
的取值范圍;
(3)令
是否存在實(shí)數(shù)
,當(dāng)
是自然對數(shù)的底)時,函數(shù)
的最小值是
.若存在,求出
的值;若不存在,說明理由.
(1)
;(2)
;(3)存在實(shí)數(shù)
,使
在
上的最小值是
.
解析試題分析:(1)當(dāng)
時,
,求其在切點(diǎn)處的導(dǎo)函數(shù)值,得到切線斜率,由點(diǎn)斜式即得所求;
(2)函數(shù)
在
上是減函數(shù),轉(zhuǎn)化成
在
上恒成立;
令
,解
即得
;
(3)假設(shè)存在實(shí)數(shù)
,使
在
上的最小值是
,根據(jù)
,
討論當(dāng)
、
、
等三種情況時,令
,求解即得.
(1)當(dāng)
時,
1分
,函數(shù)
在點(diǎn)
處的切線方程為
3分
(2)函數(shù)
在
上是減函數(shù)
在
上恒成立 4分
令
,有
得
6分
7分
(3)假設(shè)存在實(shí)數(shù)
,使
在
上的最小值是3
8分
當(dāng)
時,
,
在
上單調(diào)遞減,![]()
(舍去) 10分
當(dāng)
且
時,即
,
在
上恒成立,
在
上單調(diào)遞減
,
(舍去) 11分
當(dāng)
且
時,即
時,令
,得
;
,得![]()
在
上單調(diào)遞減,在
上單調(diào)遞增
,
滿足條件 &n
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(1)若
,求證:函數(shù)
在(1,+∞)上是增函數(shù);
(2)當(dāng)
時,求函數(shù)
在[1,e]上的最小值及相應(yīng)的x值;
(3)若存在
[l,e],使得
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(13分)已知函數(shù)
的圖象在點(diǎn)
處的切線垂直于
軸.
(1)求實(shí)數(shù)
的值;
(2)求
的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x2-1與函數(shù)g(x)=aln x(a≠0).
(1)若f(x),g(x)的圖像在點(diǎn)(1,0)處有公共的切線,求實(shí)數(shù)a的值;
(2)設(shè)F(x)=f(x)-2g(x),求函數(shù)F(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1)當(dāng)
時,討論函數(shù)
的單調(diào)性;
(2)當(dāng)
時,在函數(shù)
圖象上取不同兩點(diǎn)A、B,設(shè)線段AB的中點(diǎn)為
,試探究函數(shù)
在Q
點(diǎn)處的切線與直線AB的位置關(guān)系?
(3)試判斷當(dāng)
時
圖象是否存在不同的兩點(diǎn)A、B具有(2)問中所得出的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=ln x-
-ln a(x>0,a>0且為常數(shù)).
(1)當(dāng)k=1時,判斷函數(shù)f(x)的單調(diào)性,并加以證明;
(2)當(dāng)k=0時,求證:f(x)>0對一切x>0恒成立;
(3)若k<0,且k為常數(shù),求證:f(x)的極小值是一個與a無關(guān)的常數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1)求函數(shù)
在點(diǎn)
處的切線方程;
(2)求函數(shù)
的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
.
(1)求
的單調(diào)區(qū)間和極值;
(2)若
,當(dāng)
時,
在區(qū)間
內(nèi)存在極值,求整數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
水庫的蓄水量隨時間而變化,現(xiàn)用
表示時間,以月為單位,年初為起點(diǎn),根據(jù)歷年數(shù)據(jù),某水庫的蓄水量(單位:億立方米)關(guān)于
的近似函數(shù)關(guān)系式為![]()
(1)該水庫的蓄求量小于50的時期稱為枯水期.以
表示第1月份(
),同一年內(nèi)哪幾個月份是枯水期?
(2)求一年內(nèi)該水庫的最大蓄水量(取
計(jì)算).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com