科目:高中數學 來源: 題型:解答題
如圖所示,空間中有一直角三角形
,
為直角,
,
,現以其中一直角邊
為軸,按逆時針方向旋轉
后,將
點所在的位置記為
,再按逆時針方向繼續旋轉
后,
點所在的位置記為
.
(1)連接
,取
的中點為
,求證:面
面
;
(2)求
與平面
所成的角的正弦值.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,三棱柱ABC-A1B1C1的底面是邊長為2的正三角形且側棱垂直于底面,側棱長是
,D是AC的中點.
(1)求證:B1C∥平面A1BD;
(2)求二面角A1-BD-A的大小;
(3)求直線AB1與平面A1BD所成的角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在四棱錐P—ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點,M是棱PC上的點,PA=PD=2,BC=
AD=1,CD=
.![]()
(1)若點M是棱PC的中點,求證:PA∥平面BMQ;
(2)若二面角M—BQ—C為30°,設PM=tMC,試確定t的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖所示,PA⊥平面ABC,點C在以AB為直徑的⊙O上,∠CBA=30°,PA=AB=2,點E為線段PB的中點,點M在弧AB上,且OM∥AC.![]()
(1)求證:平面MOE∥平面PAC.
(2)求證:平面PAC⊥平面PCB.
(3)設二面角M—BP—C的大小為θ,求cos θ的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在斜三棱柱
中,側面
⊥底面
,側棱
與底面
成60°的角,
.底面
是邊長為2的正三角形,其重心為
點,
是線段
上一點,且
.
(1)求證:
//側面
;
(2)求平面
與底面
所成銳二面角的余弦值;
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com