(本題滿(mǎn)分14分)
如圖,在底面是直角梯形的四棱錐S-ABCD中,
![]()
![]()
![]()
(1)求四棱錐S-ABCD的體積;
(2)求證:![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在四棱錐
中,
平面ABCD,底面ABCD是菱形,
,
.![]()
(1)求證:
平面PAC;
(2)若
,求PB與AC所成角的余弦值;
(3)若PA=
,求證:平面PBC⊥平面PDC
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,平面ABCD⊥平面ADEF,其中ABCD為矩形,ADEF為梯形,AF∥DE,AF⊥FE,AF=AD=2 DE=2,M為AD中點(diǎn).![]()
(Ⅰ) 證明
;
(Ⅱ) 若二面角A-BF-D的平面角的余弦值為
,求AB的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知三棱錐O-ABC的側(cè)棱OA,OB,OC兩兩垂直,且OA=2,OB=3,OC=4,E是OC的中點(diǎn).![]()
(1)求異面直線BE與AC所成角的余弦值;
(2)求二面角A-BE-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
如圖,在多面體
中,平面
∥平面
,
⊥平面
,
,
,
∥
.
且
,
.![]()
(Ⅰ)求證:
平面
;
(Ⅱ)求證:
∥平面
;
(Ⅲ)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
如圖:直三棱柱ABC—
中,![]()
,
,D為AB中點(diǎn)。![]()
(1)求證:
;
(2)求證:
∥平面
;
(3)求C1到平面A1CD的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題12分)在直角梯形PBCD中,
,A為PD的中點(diǎn),如下左圖。將
沿AB折到
的位置,使
,點(diǎn)E在SD上,且
,如下圖。![]()
(1)求證:
平面ABCD;
(2)求二面角E—AC—D的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐
中,底面ABCD是正方形,側(cè)棱
底面ABCD,
,E是PC的中點(diǎn),作
交PB于點(diǎn)F.![]()
(I) 證明: PA∥平面EDB;
(II) 證明:PB⊥平面EFD;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題12分)如圖,在多面體ABCDEF中,底面ABCD是 平行四邊形,AB=2EF,EF∥AB,,H為BC的中點(diǎn).求證:FH∥平面EDB.![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com