如圖,平面ABCD⊥平面ADEF,其中ABCD為矩形,ADEF為梯形,AF∥DE,AF⊥FE,AF=AD=2 DE=2,M為AD中點(diǎn).![]()
(Ⅰ) 證明
;
(Ⅱ) 若二面角A-BF-D的平面角的余弦值為
,求AB的長.
(Ⅰ).由已知
為正三角形,
;(Ⅱ) AB=
.
解析試題分析:(Ⅰ).由已知
為正三角形,![]()
(Ⅱ) 方法一:設(shè)AB=x.取AF的中點(diǎn)G.由題意得DG⊥AF.
因?yàn)槠矫鍭BCD⊥平面ADEF,AB⊥AD,所以AB⊥平面ADEF,
所以AB⊥DG.所以DG⊥平面ABF.過G作GH⊥BF,垂足為H,
連結(jié)DH,則DH⊥BF,
所以∠DHG為二面角A-BF-D的平面角.在直角△AGD中,AD=2,AG=1,得DG=
.
在直角△BAF中,由
=sin∠AFB=
,得
=
,所以GH=
.
在直角△DGH中,DG=
,GH=
,得DH=
.
因?yàn)閏os∠DHG=
=
,得x=
,所以AB=
.
方法二:設(shè)AB=x.以F為原點(diǎn),AF,F(xiàn)Q所在的直線分別為x軸,y軸建立空間直角坐標(biāo)系Fxyz.
則F(0,0,0),A(-2, 0,0),E(
,0,0),D(-1,
,0),B(-2,0,x),所以
=(1,-
,0),
=(2,0,-x).
因?yàn)镋F⊥平面ABF,所以平面ABF的法向量可取
=(0,1,0).
設(shè)
=(x1,y1,z1)為平面BFD的法向量,則![]()
所以,可取
=(
,1,
).因?yàn)閏os<
,
>=
=
,
得x=
,所以AB=
.
方法三:以M為原點(diǎn),MA, MF所在的直線分別為x軸,y軸建立空間直角坐標(biāo)系Fxyz.略
考點(diǎn):本題主要考查立體幾何中的垂直關(guān)系,距離的計(jì)算。
點(diǎn)評:典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離、體積的計(jì)算。在計(jì)算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計(jì)算”的步驟。本題利用向量簡化了證明過程。把證明問題轉(zhuǎn)化成向量的坐標(biāo)運(yùn)算,這種方法帶有方向性。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,已知AC ⊥平面CDE, BD ∥AC ,
為等邊三角形,F(xiàn)為ED邊上的中點(diǎn),且
,![]()
(Ⅰ)求證:CF∥面ABE;
(Ⅱ)求證:面ABE ⊥平面BDE;
(Ⅲ)求該幾何體ABECD的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐
中,底面
為直角梯形,且
,
,側(cè)面
底面
. 若
.![]()
(Ⅰ)求證:
平面
;
(Ⅱ)側(cè)棱
上是否存在點(diǎn)
,使得
平面
?若存在,指出點(diǎn)
的位置并證明,若不存在,請說明理由;
(Ⅲ)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知兩個正方形ABCD 和DCEF不在同一平面內(nèi),且平面ABCD ⊥平面DCEF,M,N分別為AB,DF的中點(diǎn)。![]()
(1)求直線MN與平面ABCD所成角的正弦值;
(2)求異面直線ME與BN所成角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱錐P -ABC中,點(diǎn)P在平面ABC上的射影D是AC的中點(diǎn).BC ="2AC=8,AB" =![]()
![]()
(I )證明:平面PBC丄平面PAC
(II)若PD =
,求二面角A-PB-C的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)如圖,四棱錐P-ABCD的底面ABCD是直角梯形,∠DAB=∠ABC=90o,PA⊥底面ABCD,PA=AB=AD=2,BC=1,E為PD的中點(diǎn).![]()
(1) 求證:CE∥平面PAB;
(2) 求PA與平面ACE所成角的大;
(3) 求二面角E-AC-D的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,底面為直角梯形ABCD,AD∥BC,∠BAD=90O,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分別為PC,PB的中點(diǎn).(1)求證:PB⊥DM;(2)求CD與平面ADMN所成角的正弦值;(3)在棱PD上是否存在點(diǎn)E,且PE∶ED=λ,使得二面角C-AN-E的平面角為60o.若存在求出λ值,若不存在,請說明理由。![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com