中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知
(1)求使上是減函數的充要條件;
(2)求上的最大值。

(1)
(2)

解析試題分析:(1)

(2)由(1)知,當

最大值為
   12分
考點:本題主要考查充要條件的概念,應用導數研究函數的單調性、最值。
點評:典型題,本題屬于導數應用中的基本問題,通過研究函數的單調性,明確了極值情況。通過比較極值、區間端點函數值的大小,得到函數的最值。涉及對數函數,要特別注意函數的定義域。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數
(1)若,求函數的單調區間;
(2)若恒成立,求實數的取值范圍;
(3)設,若對任意的兩個實數滿足,總存在,使得成立,證明:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數
(Ⅰ)試問函數能否在處取得極值,請說明理由;
(Ⅱ)若,當時,函數的圖像有兩個公共點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知在區間[0,1]上是增函數,在區間上是減函數,又.
(1) 求的解析式;
(2) 若在區間(m>0)上恒有x成立,求m的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)當時,求曲線在點處的切線方程;
(2)當時,若在區間上的最小值為-2,求實數的取值范圍;
(3)若對任意,且恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數
(1)若,求曲線處的切線方程;
(2)若恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)求函數的最大值;
(Ⅱ)若對任意,不等式恒成立,求實數的取值范圍;
(Ⅲ)若,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)討論的單調性;
(2)若上的最大值為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

題文已知函數.
(1)求函數的單調遞減區間;
(2)若不等式對一切恒成立,求的取值范圍.

查看答案和解析>>

同步練習冊答案