(本小題滿分13分)設橢圓![]()
的右焦點為
,直線
與
軸交于點
,若
(其中
為坐標原點).
(1)求橢圓
的方程;
(2)設
是橢圓
上的任意一點,
為圓
的任意一條直徑(
、
為直徑的兩個端點),求
的最大值.
科目:高中數學 來源: 題型:解答題
(本小題滿分12分) 已知圓
過橢圓
的兩焦點,與橢圓有且僅有兩個公共點;直線
與圓
相切 ,與橢圓
相交于
兩點記![]()
(1)求橢圓的方程;
(2)求
的取值范圍;
(3)求
的面積S的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)已知橢圓
的左右焦點分別為
、
,短軸兩個端點為
、
,且四邊形
是邊長為2的正方形。
(1)求橢圓方程;
(2)若
分別是橢圓長軸的左右端點,動點
滿足
,連接
,交橢圓于點
;證明:
為定值;
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(13分)已知拋物線D的頂點是橢圓
的中心,焦點與該橢圓的右焦點重合。
(1)求拋物線D的方程;
(2)已知動直線l過點P(4,0),交拋物線D于A,B兩點
(i)若直線l的斜率為1,求AB的長;
(ii)是否存在垂直于x軸的直線m被以AP為直徑的圓M所截得的弦長恒為定值?如果存在,求出m的方程,如果不存在,說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題12分)
已知橢圓
,斜率為
的直線
交橢圓
于
兩點,且點
在直線
的上方,
(1)求直線
與
軸交點的橫坐標
的取值范圍;
(2)證明:
的內切圓的圓心在一條直線上. ![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com