中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知函數 .
(Ⅰ)當時,求在點處的切線方程;
(Ⅱ)若函數在區間上為單調函數,求的取值范圍.
(1)
(2)當在[1,]上是單調函數

試題分析:解(I)時  
 
        
切線方程  
                 4分
(II)    
在[1,e]上單調函數在[1,2]上
       
 
對稱軸   
    
     或

由上得出當
在[1,]上是單調函數                  12分
點評:主要是考查了導數在研究函數中的運用,屬于中檔題,對于單調性的增減,等價于導數恒大于等于零或者小于等于零,是解題的關鍵。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知函數.
(Ⅰ) 若函數處的切線方程為,求實數的值.
(Ⅱ)當時,不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

函數的導數等于          

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題


的單調區間
 兩點連線的斜率為,問是否存在常數,且,當時有,當時有;若存在,求出,并證明之,若不存在說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數.
(1)求的單調遞增區間;
(2)若處的切線與直線垂直,求證:對任意,都有
(3)若,對于任意,都有成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知的導函數.
(Ⅰ)若,求的值;
(Ⅱ)若圖象與圖象關于直線對稱,△ABC的三個內角A、B、C所對的邊長分別為,角A為的初相,,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數,其中.
(1)若對一切恒成立,求的取值范圍;
(2)在函數的圖像上取定兩點,記直線 的斜率為,證明:存在,使成立.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

分別是定義在上的奇函數和偶函數,當時, ,且,則不等式的解集是(    )
A.(-3,0)∪(3,+∞)B.(-3,0)∪(0, 3)
C.(-∞,- 3)∪(3,+∞)D.(-∞,- 3)∪(0, 3)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

如圖所示,函數的圖象在點P處的切線方程是,則             

查看答案和解析>>

同步練習冊答案