如圖,己知直線l與拋物線
相切于點P(2,1),且與x軸交于點A,定點B(2,0).![]()
(1)若動點M滿足
,求點M軌跡C的方程:
(2)若過點B的直線
(斜率不為零)與(1)中的軌跡C交于不同的兩點E,F(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.
科目:高中數學 來源: 題型:解答題
在平面直角坐標系
中,已知橢圓
的中心在原點
,焦點在
軸上,短軸長為
,離心率為
.
(I)求橢圓
的方程;
(II)
為橢圓
上滿足
的面積為
的任意兩點,
為線段
的中點,射線
交橢圓
與點
,設
,求實數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線
(
且
為常數),
為其焦點.![]()
(1)寫出焦點
的坐標;
(2)過點
的直線與拋物線相交于
兩點,且
,求直線
的斜率;
(3)若線段
是過拋物線焦點
的兩條動弦,且滿足
,如圖所示.求四邊形
面積的最小值
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
:![]()
過點
,上、下焦點分別為
、
,
向量
.直線
與橢圓交于
兩點,線段
中點為
.
(1)求橢圓
的方程;
(2)求直線
的方程;
(3)記橢圓在直線
下方的部分與線段
所圍成的平面區域(含邊界)為
,若曲線
與區域
有公共點,試求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
橢圓
:
的右焦點為
且
為常數,離心率為
,過焦點
、傾斜角為
的直線
交橢圓
與M,N兩點,
(1)求橢圓
的標準方程;
(2)當
=
時,
=
,求實數
的值;
(3)試問
的值是否與直線
的傾斜角
的大小無關,并證明你的結論
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線
的焦點為
,點
是拋物線上的一點,且其縱坐標為4,
.
(1)求拋物線的方程;
(2)設點
是拋物線上的兩點,
的角平分線與
軸垂直,求直線AB的斜率;
(3)在(2)的條件下,若直線
過點
,求弦
的長.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
的中心在坐標原點,焦點在
軸上,其左、右焦點分別為
、
,短軸長為
,點
在橢圓
上,且滿足
的周長為6.
(Ⅰ)求橢圓
的方程;;
(Ⅱ)設過點
的直線與橢圓相交于A、B兩點,試問在x軸上是否存在一個定點M使
恒為定值?若存在求出該定值及點M的坐標,若不存在請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知曲線
,![]()
(1)化
的方程為普通方程,并說明它們分別表示什么曲線?
(2)若
上的點P對應的參數為
,Q為
上的動點,求PQ的中點M到直線
的距離的最小值
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知平面上動點P(
)及兩個定點A(-2,0),B(2,0),直線PA、PB的斜率分別為
、
且![]()
(I)求動點P所在曲線C的方程。
(II)設直線
與曲線C交于不同的兩點M、N,當OM⊥ON時,求點O到直線
的距離。(O為坐標原點)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com