已知曲線
,![]()
(1)化
的方程為普通方程,并說明它們分別表示什么曲線?
(2)若
上的點P對應(yīng)的參數(shù)為
,Q為
上的動點,求PQ的中點M到直線
的距離的最小值
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在矩形
中,
分別為四邊的中點,且都在坐標(biāo)軸上,設(shè)
,
.![]()
(Ⅰ)求直線
與
的交點
的軌跡
的方程;
(Ⅱ)過圓![]()
上一點
作圓的切線與軌跡
交于
兩點,若
,試求出
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,己知直線l與拋物線
相切于點P(2,1),且與x軸交于點A,定點B(2,0).![]()
(1)若動點M滿足
,求點M軌跡C的方程:
(2)若過點B的直線
(斜率不為零)與(1)中的軌跡C交于不同的兩點E,F(xiàn)(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:
(
)經(jīng)過
與
兩點.![]()
(Ⅰ)求橢圓
的方程;
(Ⅱ)過原點的直線l與橢圓C交于A、B兩點,橢圓C上一點M滿足
.求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點
是離心率為
的橢圓
:
上的一點,斜率為
的直線
交橢圓
于
、
兩點,且
、
、
三點不重合.
(1)求橢圓
的方程;
(2)
的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的中心在坐標(biāo)原點,焦點在
軸上,離心率為
,且過雙曲線
的頂點.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)命題:“設(shè)
、
是雙曲線
上關(guān)于它的中心對稱的任意兩點,
為該雙曲線上的動點,若直線
、
均存在斜率,則它們的斜率之積為定值”.試類比上述命題,寫出一個關(guān)于橢圓
的類似的正確命題,并加以證明和求出此定值;
(3)試推廣(Ⅱ)中的命題,寫出關(guān)于方程
(
,
不同時為負(fù)數(shù))的曲線的統(tǒng)一的一般性命題(不必證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知F1、F2分別為橢圓C1:
的上、下焦點,其中F1也是拋物線C2:
的焦點,點A是曲線C1,C2在第二象限的交點,且![]()
![]()
(Ⅰ)求橢圓
1的方程;
(Ⅱ)已知P是橢圓C1上的動點,MN是圓C:
的直徑,求
的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù)).若以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,則曲線C的極坐標(biāo)方程為
.
(Ⅰ) 求曲線C的直角坐標(biāo)方程;
(Ⅱ) 求直線
被曲線
所截得的弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線
(
)上一點
到其準(zhǔn)線的距離為
.![]()
(Ⅰ)求
與
的值;
(Ⅱ)設(shè)拋物線
上動點
的橫坐標(biāo)為
(
),過點
的直線交
于另一點
,交
軸于
點(直線
的斜率記作
).過點
作
的垂線交
于另一點
.若
恰好是
的切線,問
是否為定值?若是,求出該定值;若不是,說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com