中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知=2,點()在函數的圖像上,其中=.
( 1 ) 證明:數列}是等比數列;
(2)設,求及數列{}的通項公式;
(3)記,求數列{}的前n項和,并證明.

(1)根據遞推關系分析可知,兩邊取對數來得到證明。
(2)
(3),并根據上面的結論來得到證明

解析試題分析:(1)證明:由已知
 兩邊取對數得,即
是公比為2的等比數列。
(2)解:由(1)知

=
(3

 
考點:數列的求和
點評:主要是考查了數列的求和的運用,以及等比數列的定義的運用,屬于難度試題。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數同時滿足:①不等式 的解集有且只有一個元素;②在定義域內存在,使得不等式成立 設數列的前項和為
(1)求數列的通項公式;
(2)設各項均不為零的數列中,所有滿足的正整數的個數稱為這個數列的變號數,令為正整數),求數列的變號數

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

數列滿足,且.
(1)求
(2)是否存在實數t,使得,且{}為等差數列?若存在,求出t的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

對于給定數列,如果存在實常數使得對于任意都成立,我們稱數列是“數列”.
(Ⅰ)若,數列是否為“數列”?若是,指出它對應的實常數,若不是,請說明理由;
(Ⅱ)證明:若數列是“數列”,則數列也是“數列”;
(Ⅲ)若數列滿足為常數.求數列項的和.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知各項均為正數的數列的前項和為,且對任意正整數,點都在直線上.
(1)求數列的通項公式;
(2)若求數列項和

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列滿足
(1)設是公差為的等差數列.當時,求的值;
(2)設求正整數使得一切均有

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知正項數列在拋物線上;數列中,點在過點(0,1),以為斜率的直線上。
(1)求數列的通項公式;
(2)若成立,若存在,求出k值;若不存在,請說明理由;
(3)對任意正整數,不等式恒成立,求正數的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在數列{}中,,且
(1)求的值;
(2)猜測數列{}的通項公式,并用數學歸納法證明。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數上是增函數
(1)求實數的取值集合
(2)當取值集合中的最小值時, 定義數列;滿足, , 設, 證明:數列是等比數列, 并求數列的通項公式.
(3)若, 數列的前項和為, 求.

查看答案和解析>>

同步練習冊答案