中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

如圖,在△ABC中,∠ABC=90°,∠A=30。,斜邊AC上的中線(xiàn)BD=2,現(xiàn)沿BD將△BCD折起成三棱錐C-ABD,已知G是線(xiàn)段BD的中點(diǎn),E,F(xiàn)分別是CG,AG的中點(diǎn).

(1)求證:EF//平面ABC;
(2)三棱錐C—ABD中,若棱AC=,求三棱錐A一BCD的體積.

(1)證明過(guò)程詳見(jiàn)解析;(2).

解析試題分析:本題主要以平面圖形的翻折為幾何背景,考查三棱錐中的線(xiàn)線(xiàn)平行、線(xiàn)面平行、線(xiàn)面垂直以及三棱錐的體積等數(shù)學(xué)知識(shí),考查學(xué)生的空間想象能力和邏輯推理能力.第一問(wèn),由題意得EF//AC,利用線(xiàn)面平行的判定得線(xiàn)面平行;第二問(wèn),在中,利用余弦定理可以求出AG的邊長(zhǎng),在中,利用三個(gè)邊長(zhǎng)的關(guān)系,可判斷出,所以利用線(xiàn)面垂直的判定可以得到平面ABD,所以CG是錐體的高,利用等體積法將轉(zhuǎn)化為,從而求出錐體的體積.
試題解析:(1) 證明:⑴ EF是的中位線(xiàn)EF//AC   3分
又AC平面ABC    EF平面ABC
EF//平面ABC        6分
⑵在中,,由余弦定理得:
,   8分
 
即CGAG,又CGBD 平面ABD   10分
     12分
考點(diǎn):1.線(xiàn)面平行的判定;2.線(xiàn)面垂直的判定;3.余弦定理;4.等體積法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四棱錐P-ABCD中,底面ABCD為正方形,DA⊥面ABP,AB=1,PA=2,∠PAB=60°.
(1)求證:平面PBC⊥面PDC
(2)設(shè)E為PC上一點(diǎn),若二面角B-EA-P的余弦值為-,求三棱錐E-PAB的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,△中,,在三角形內(nèi)挖去一個(gè)半圓(圓心在邊上,半圓與分別相切于點(diǎn),與交于點(diǎn)),將△繞直線(xiàn)旋轉(zhuǎn)一周得到一個(gè)旋轉(zhuǎn)體.

(1)求該幾何體中間一個(gè)空心球的表面積的大小;
(2)求圖中陰影部分繞直線(xiàn)旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓錐母線(xiàn)長(zhǎng)為6,底面圓半徑長(zhǎng)為4,點(diǎn)是母線(xiàn)的中點(diǎn),是底面圓的直徑,半徑與母線(xiàn)所成的角的大小等于

(1)求圓錐的側(cè)面積和體積.
(2)求異面直線(xiàn)所成的角;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐中,底面為直角梯形,且,平面底面的中點(diǎn),是棱的中點(diǎn),.

(1)求證:平面
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓臺(tái)的上、下底面半徑分別是2、6,且側(cè)面面積等于兩底面面積之和。
(1)求該圓臺(tái)的母線(xiàn)長(zhǎng);(2)求該圓臺(tái)的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,直三棱柱ABCA′B′C′,∠BAC=90°,AB=AC=,AA′=1,點(diǎn)M,N分別為
A′B和B′C′的中點(diǎn).

(1)證明:MN∥平面A′ACC′;
(2)求三棱錐A′MNC的體積.(錐體體積公式V=Sh,其中S為底面面積,h為高)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,四邊形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,點(diǎn)E、F分別在BC、AD上,EF∥AB.現(xiàn)將四邊形ABEF沿EF折起,使平面ABEF⊥平面EFDC,設(shè)AD中點(diǎn)為P.

(1)當(dāng)E為BC中點(diǎn)時(shí),求證:CP∥平面ABEF;
(2)設(shè)BE=x,問(wèn)當(dāng)x為何值時(shí),三棱錐ACDF的體積有最大值?并求出這個(gè)最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,菱形的邊長(zhǎng)為2,為正三角形,現(xiàn)將沿向上折起,折起后的點(diǎn)記為,且,連接

(1)若的中點(diǎn),證明:平面
(2)求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案