在四棱柱
中,
底面
,底面
為菱形,
為
與
交點(diǎn),已知
,
.![]()
(1)求證:
平面
;
(2)求證:
∥平面
;
(3)設(shè)點(diǎn)
在
內(nèi)(含邊界),且![]()
,說明滿足條件的點(diǎn)
的軌跡,并求
的最小值.
(1)詳見解析;(2)詳見解析;(3)
點(diǎn)在線段
上,
的最小值
.
解析試題分析:(1)求證:
平面
,證明線面垂直,即證線線垂直,即在平面
找兩條相交直線與
垂直,由于底面
為菱形,則
,又
底面
,得
底面
,即![]()
,從而得證;(2)求證:
∥平面
,證明線面平行,首先證明線線平行,可用三角形的中位線平行,也可用平行四邊形的對(duì)邊平行,注意到
是
的中點(diǎn),連接
,交
于點(diǎn)
,連接
,證得四邊形
是平行四邊形,從而得
∥
,從而可證
∥平面
.;(3)連接
,則
,又在
中,
,又
為
中點(diǎn),所以![]()
![]()
,得![]()
平面
,由已知可知,
∥
,由![]()
,得
,故
點(diǎn)一定在線段
上,這樣就得到點(diǎn)
的軌跡,進(jìn)而可得
的最小值.
試題解析:(1)依題意, 因?yàn)樗睦庵?img src="http://thumb.zyjl.cn/pic5/tikupic/11/d/1jv2g4.png" style="vertical-align:middle;" />中,
底面
,
所以
底面
.
又
底面
,所以![]()
.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/77/0/myig.png" style="vertical-align:middle;" />為菱形,所以
.而
,所以
平面
. 4分
(2)連接
,交
于點(diǎn)
,連接
.依題意,
∥
,且
,
,
所以
為矩形.所以
∥
.又![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,長方體
中,
,G是
上的動(dòng)點(diǎn)。
(l)求證:平面ADG![]()
;
(2)判斷
與平面ADG的位置關(guān)系,并給出證明;
(3)若G是
的中點(diǎn),求二面角G-AD-C的大;![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知四棱錐
中,
平面
,底面
是直角梯形,
且
.![]()
(1)求證:
平面
;
(2)求證:
平面
;
(3)若
是
的中點(diǎn),求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在四棱錐P-ABCD中,AB∥DC,AB⊥平面PAD, PD=AD,AB=2DC,E是PB的中點(diǎn).![]()
求證:(1)CE∥平面PAD;
(2)平面PBC⊥平面PAB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐
中,底面
是矩形,
,
,
,
是棱
的中點(diǎn).![]()
(1)求證:
平面
;
(2)求證:
平面
;
(3)在棱
上是否存在一點(diǎn)
,使得平面
平面
?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在三棱柱
中,
,
,點(diǎn)
分別是
的中點(diǎn).
(1)求證:平面
∥平面
;
(2)求證:平面
⊥平面
;
(3)若
,
,求異面直線
所成的角。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平行四邊形ABCD中,AB=2BC,∠ABC=120°,E為線段AB的中點(diǎn),將△ADE沿直線DE翻折成△A′DE,使平面A′DE⊥平面BCD,F為線段A′C的中點(diǎn).![]()
(1)求證:BF∥平面A′DE;
(2)設(shè)M為線段DE的中點(diǎn),求直線FM與平面A′DE所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在正方體ABCD-A1B1C1D1中,對(duì)角線A1C與平面BDC1交于點(diǎn)O,AC、BD交于點(diǎn)M,E為AB的中點(diǎn),F(xiàn)為AA1的中點(diǎn).求證:
(1)C1、O、M三點(diǎn)共線;
(2)E、C、D1、F四點(diǎn)共面.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com