中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=(
1
3
)x
,等比數列{an}的前n項和為f(n)-c,正項數列{bn}的首項為c,且前n項和Sn滿足Sn-Sn-1=
Sn
+
Sn-1
(n≥2).
(1)求數列{an}的通項公式;
(2)證明數列{
Sn
}是等差數列,并求Sn
(3)若數列{
1
bnbn+1
}前n項和為Tn,問Tn
1000
2009
的最小正整數n是多少?
(4)設cn=
2bn
an
,求數列{cn}的前n項和Pn
分析:(1)因為a1=f(1)-c=
1
3
-c
a2=[f(2)-c]-[f(1)-c]=-
2
9
a3=[f(3)-c]-[f(2)-c]=-
2
27
.數列{an}成等比數列,能求出數列{an}的通項公式.
(2)由Sn-Sn-1=
Sn
+
Sn-1
,n≥2,知
Sn
-
Sn-1
=1
,(n≥2),由此能夠證明數列{
Sn
}是等差數列,并求出Sn
(3)由(2)得Sn=n2,當n≥2時,bn=Sn-Sn-1=n2-(n-1)2=2n-1,故
1
bnbn+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)
,由此利用裂項求和法能求出滿足Tn
1000
2009
的最小正整數.
(4)由cn=
2bn
an
=(1-2n)•3n
,知Pn=(-1)×3+(-3)×32+(-5)×33+…+(1-2n)×3n,由此利用錯位相減法能夠求出數列{cn}的前n項和Pn
解答:解:(1)因為a1=f(1)-c=
1
3
-c

a2=[f(2)-c]-[f(1)-c]=-
2
9

a3=[f(3)-c]-[f(2)-c]=-
2
27

又數列{an}成等比數列,
所以a1=
a22
a3
=
4
81
-
2
27
=-
2
3
=
1
3
-c

解得c=1.…(2分)
又公比q=
a2
a1
=
1
3

所以an=-
2
3
•(
1
3
)n-1
=-2•(
1
3
n-1,n∈N*.…(3分)
(2)∵Sn-Sn-1=
Sn
+
Sn-1
,n≥2,
(
Sn
-
Sn-1
)(
Sn
+
Sn-1
)=
Sn
+
Sn-1
,n≥2
Sn
-
Sn-1
=1
,(n≥2)…(5分)
S1
=
b1
=
c
=1

∴數列{
Sn
}構成一個首項為1,公差為1的等差數列,
Sn
=1+(n-1)×1=n,∴Sn=n2.…(6分)
(3)由(2)得Sn=n2
當n≥2時,bn=Sn-Sn-1=n2-(n-1)2=2n-1,(*)
又b1=S1=1,適合(*)式
∴bn=2n-1,(n∈N*) …(8分)
1
bnbn+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)

Tn=
1
b1b2
+
1
b2b3
+
1
b3b4
+…+
1
bnbn+1

=
1
2
(1-
1
3
)+
1
2
(
1
3
-
1
5
)+
1
2
(
1
5
-
1
7
)+…+
1
2
(
1
2n-1
-
1
2n+1
)

=
1
2
(1-
1
2n-1
)=
n
2n+1
,…(10分)
由Tn=
n
2n+1
1000
2009
,得n>
1000
9

故滿足Tn
1000
2009
的最小正整數為112.…(11分)
(4)cn=
2bn
an
=(1-2n)•3n
.…(12分)
Pn=(-1)×3+(-3)×32+(-5)×33+…+(1-2n)×3n3Pn=(-1)×32+(-3)×33+(-5)×34+…+(3-2n)×3n+(1-2n)×3n+1
②-①得2Pn=3+2×32+2×33+…+2×3n+(1-2n)×3n+1
=3+2×
32(1-3n-1)
1-3
+(1-2n)×3n+1
=(2-2n)•3n+1-6.

Pn=(1-n)•3n+1-3.…(14分)
點評:本題考查數列的通項公式的求法,考查等差數列的證明,考查數列的前n項和的求法,解題時要認真審題,注意裂項求和法、錯位相減法的合理運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,則a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網已知函數f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定義域上的遞減函數,則實數a的取值范圍是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
|x-1|-a
1-x2
是奇函數.則實數a的值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
2x-2-x2x+2-x

(1)求f(x)的定義域與值域;
(2)判斷f(x)的奇偶性并證明;
(3)研究f(x)的單調性.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
x-1x+a
+ln(x+1)
,其中實數a≠1.
(1)若a=2,求曲線y=f(x)在點(0,f(0))處的切線方程;
(2)若f(x)在x=1處取得極值,試討論f(x)的單調性.

查看答案和解析>>

同步練習冊答案