已知橢圓
:
的離心率等于
,點(diǎn)![]()
在橢圓上.
(I)求橢圓
的方程;
(Ⅱ)設(shè)橢圓
的左右頂點(diǎn)分別為
,
,過點(diǎn)
的動直線
與橢圓
相交于
,
兩點(diǎn),是否存在定直線
:
,使得
與
的交點(diǎn)
總在直線
上?若存在,求出一個滿足條件的
值;若不存在,說明理由。
(I)
(Ⅱ) 存在定直線
:
,使得
與
的交點(diǎn)
總在直線
上,
的值是
.
解析試題分析:(1)由
,
又點(diǎn)
在橢圓上,
,所以橢圓方程:
;
(2)當(dāng)
垂直
軸時,
,則
的方程是:
,
的方程是:
,交點(diǎn)
的坐標(biāo)是:
,猜測:存在常數(shù)
,
即直線
的方程是:
使得
與
的交點(diǎn)
總在直線
上,
證明:設(shè)
的方程是
,點(diǎn)
,![]()
將
的方程代入橢圓
的方程得到:
,
即:
,
從而:
,
因?yàn)椋?img src="http://thumb.zyjl.cn/pic5/tikupic/d0/8/ej9gc2.png" style="vertical-align:middle;" />,![]()
共線,所以:
,
,
又
,
要證明
共線,即要證明
,
即證明:
,即:
,
即:
因?yàn)椋?img src="http://thumb.zyjl.cn/pic5/tikupic/4c/5/a2we2.png" style="vertical-align:middle;" />成立,
所以點(diǎn)
在直線
上.綜上:存在定直線
:
,使得
與
的交點(diǎn)
總在直線
上,
的值是
.
考點(diǎn):直線與圓錐曲線的綜合問題;橢圓的標(biāo)準(zhǔn)方程.
點(diǎn)評:本題考查橢圓方程的求法,考查滿足條件的方程是否存在,綜合性強(qiáng),難度大,有一定的探索性,解題時要認(rèn)真審題,仔細(xì)解答,注意等價轉(zhuǎn)化思想的合理運(yùn)用
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
求傾斜角是直線y=-
x+1的傾斜角的
,且分別滿足下列條件的直線方程:(1)經(jīng)過點(diǎn)(
,-1);(2)在y軸上的截距是-5.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
是橢圓
上的兩點(diǎn),已知向量![]()
,若
且橢圓的離心率
,短軸長為2,O為坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)試問△AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
曲線
都是以原點(diǎn)O為對稱中心、坐標(biāo)軸為對稱軸、離心率相等的橢圓.點(diǎn)M的坐標(biāo)是(0,1),線段MN是曲線
的短軸,并且是曲線
的長軸 . 直線
與曲線
交于A,D兩點(diǎn)(A在D的左側(cè)),與曲線
交于B,C兩點(diǎn)(B在C的左側(cè)).
(1)當(dāng)
=
,
時,求橢圓
的方程;
(2)若
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系
中,直線
的參數(shù)方程為
(t為參數(shù)),它與曲線
交于A、B兩點(diǎn)。
(1)求
的長;
(2)在以
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)P的極坐標(biāo)為
,求點(diǎn)P到線段AB中點(diǎn)M的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓![]()
的離心率為
,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線
相切.
(Ⅰ)求橢圓
的方程;
(Ⅱ)若過點(diǎn)
的直線與橢圓
相交于兩點(diǎn)
,設(shè)
為橢圓上一點(diǎn),且滿足
(其中
為坐標(biāo)原點(diǎn)),求整數(shù)
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:![]()
的短軸長等于焦距,橢圓C上的點(diǎn)到右焦點(diǎn)
的最短距離為
.
(1)求橢圓C的方程;
(2)過點(diǎn)
且斜率為
(
>0)的直線
與C交于
兩點(diǎn),
是點(diǎn)
關(guān)于
軸的對稱點(diǎn),證明:
三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:
(a>b>0),則稱以原點(diǎn)為圓心,r=
的圓為橢圓C的“知己圓”。
(Ⅰ)若橢圓過點(diǎn)(0,1),離心率e=
;求橢圓C方程及其“知己圓”的方程;
(Ⅱ)在(Ⅰ)的前提下,若過點(diǎn)(0,m)且斜率為1的直線截其“知己圓”的弦長為2,求m的值;
(Ⅲ)討論橢圓C及其“知己圓”的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1)設(shè)橢圓
:
與雙曲線
:
有相同的焦點(diǎn)
,
是橢圓
與雙曲線
的公共點(diǎn),且
的周長為
,求橢圓
的方程;
我們把具有公共焦點(diǎn)、公共對稱軸的兩段圓錐曲線弧合成的封閉曲線稱為“盾圓”.
(2)如圖,已知“盾圓
”的方程為
.設(shè)“盾圓
”上的任意一點(diǎn)
到
的距離為
,
到直線
的距離為
,求證:
為定值;
(3)由拋物線弧
:
(
)與第(1)小題橢圓弧
:
(
)所合成的封閉曲線為“盾圓
”.設(shè)過點(diǎn)
的直線與“盾圓
”交于
兩點(diǎn),
,
且
(
),試用
表示
;并求
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com