(本小題滿分14分)
已知拋物線
的頂點為坐標原點,焦點在
軸上. 且經過點
,
(1)求拋物線
的方程;
(2)若動直線
過點
,交拋物線
于
兩點,是否存在垂直于
軸的直線
被以
為直徑的圓截得的弦長為定值?若存在,求出
的方程;若不存在,說明理由.
科目:高中數學 來源: 題型:解答題
(本小題14分)已知橢圓
的離心率為
,以原點為圓心,橢圓短半軸長為半徑的圓與直線
相切,
分別是橢圓的左右兩個頂點,
為橢圓
上的動點.
(1)求橢圓的標準方程;
(2)若
與
均不重合,設直線
的斜率分別為
,求
的值。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題12分) 將圓O:
上各點的縱坐標變為原來的一半 (橫坐標不變), 得到曲線
、拋物線
的焦點是直線y=x-1與x軸的交點.
(1)求
,
的標準方程;
(2)請問是否存在直線
滿足條件:① 過
的焦點
;②與
交于不同兩
點
,
,且滿足
?若存在,求出直線
的方程; 若不存在,說明
理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知雙曲線C的中心在原點,拋物線
的焦點是雙曲線C的一個焦點,且雙曲線經過點
,又知直線
與雙曲線C相交于A、B兩點.
(1)求雙曲線C的方程;
(2)若
,求實數k值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(12分)如圖,已知橢圓
(a>b>0)的離心率
,過點
和
的直線與原點的距離為
.![]()
(1)求橢圓的方程;
(2)已知定點
,若直線
與橢圓交于
、
兩 點.問:是否存在
的值,
使以
為直徑的圓過
點?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)已知橢圓的中心在原點,焦點在
軸上,離心率為
,且經過點
,直線
交橢圓于不同的兩點
.
(1)求橢圓的方程;
(2)求
的取值范圍;
(3)若直線
不過點
,求證:直線
與
軸圍成一個等腰三角形.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com