中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
若函數y=f(x)在R上有定義,對于給定的正數M,定義函數fM(x)=
f(x),f(x)≥M
M,f(x)<M
,若給定函數f(x)=ex-1,當M=1時,fM(x)的單調遞增區間是(  )
分析:先求出fM(x)的表達式,由表達式易求其單調增區間.
解答:解:由f(x)=ex-1≥1,得x≥ln2,
因此,當x≥ln2時,fM(x)=ex-1;
當x<ln2時,fM(x)=1,即fM(x)=
ex-1,x≥ln2
1,x<ln2

所以fM(x)的單調遞增區間時[ln2,+∞),
故選C.
點評:本題考查函數單調性,考查分段函數的性質,屬基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知變量t,y滿足關系式loga
t
a3
=logt
y
a3
,a>0且a≠1,t>0且t≠1,變量t,x滿足關系式t=ax,變量y,x滿足函數關系式y=f(x).
(1)求函數y=f(x)表達式;
(2)若函數y=f(x)在[2a,3a]上具有單調性,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
38
x2-2x+2+ln x.
(Ⅰ)求函數y=f(x)的單調區間;
(Ⅱ)若函數y=f(x)在[em,+∞)(m∈Z)上有零點,求m的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=-x2+2ax-3a.
(Ⅰ)若函數y=f(x)在(-∞,1)上是增函數,求實數a的取值范圍;
(Ⅱ)當函數f(x)在[1,2]上的最大值為4時,求實數a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(2x)=x2-2ax+3
(1)求函數y=f(x)的解析式
(2)若函數y=f(x)在[
12
,8]上的最小值為-1,求a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數y=f(x)在(0,+∞)上的導函數為f′(x),且不等式xf′(x)>f(x)恒成立,又常數a,b滿足a>b>0,則下列不等式一定成立的是
 

①bf(a)>af(b);②af(a)>bf(b);③bf(a)<af(b);④af(a)<bf(b).

查看答案和解析>>

同步練習冊答案