中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=()x,x∈[-1,1],函數g(x)=f2(x)-2af(x)+3的最小值為h(a)。
(1)求h(a);
(2)是否存在實數m,n,同時滿足以下條件:①m>n>3;②當h(a)的定義域為[n,m]時,值域為[n2,m2]。若存在,求出m,n的值;若不存在,說明理由.
解:(1)因為x∈[-1,1],所以,
,
則g(x)=φ(t)=t2-2at+3=(t-a)2+3-a2,
當a<時,
≤a≤3時,h(a)=φ(a)=3-a2;
當a>3時,h(a)=φ(3)=12-6a;
所以,
(2)因為m>n>3,a∈[n,m],所以h(a)=12-6a,
因為h(a)的定義域為[n,m],值域為[n2,m2],且h(a)為減函數,
所以,兩式相減得6(m-n)=(m-n)(m+n),
因為m>n,所以m-n≠0,得m+n=6,
但這與“m>n>3”矛盾,故滿足條件的實數m,n不存在。
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,則a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網已知函數f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定義域上的遞減函數,則實數a的取值范圍是( 。
A、(
1
3
,1)
B、(
1
3
,
1
2
]
C、(
1
3
,
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
|x-1|-a
1-x2
是奇函數.則實數a的值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
2x-2-x2x+2-x

(1)求f(x)的定義域與值域;
(2)判斷f(x)的奇偶性并證明;
(3)研究f(x)的單調性.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
x-1x+a
+ln(x+1)
,其中實數a≠1.
(1)若a=2,求曲線y=f(x)在點(0,f(0))處的切線方程;
(2)若f(x)在x=1處取得極值,試討論f(x)的單調性.

查看答案和解析>>

同步練習冊答案