已知
是自然對數(shù)的底數(shù),函數(shù)
.
(1)求函數(shù)
的單調(diào)遞增區(qū)間;
(2)當(dāng)
時(shí),函數(shù)
的極大值為
,求
的值.
(1)詳見解析;(2)
.
解析試題分析:本題主要考查導(dǎo)數(shù)的運(yùn)算、利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性、利用導(dǎo)數(shù)求函數(shù)的極值等基礎(chǔ)知識(shí),考查學(xué)生的分析問題解決問題的能力和計(jì)算能力.第一問,先求函數(shù)
的導(dǎo)數(shù),利用
單調(diào)遞增,
單調(diào)遞減,但在解題過程中需討論a的正負(fù);第二問,利用第一問的結(jié)論,函數(shù)的單調(diào)性,確定函數(shù)的極大值在
時(shí)取得,將
代入
中得到極大值,列出方程解出a的值,得到結(jié)論.
試題解析:(1)函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/98/8/1tuqw2.png" style="vertical-align:middle;" />.求導(dǎo)得
3分
當(dāng)
時(shí),令
,解得
,此時(shí)函數(shù)
的單調(diào)遞增區(qū)間為
; 5分
當(dāng)
時(shí),令
,解得
,此時(shí)函數(shù)
的單調(diào)遞增區(qū)間為
,
7分
(2)由(1)可知,當(dāng)
時(shí),函數(shù)
在區(qū)間
上單調(diào)遞減,在
上單調(diào)遞增,于是當(dāng)
時(shí),函數(shù)
取到極大值,極大值為
,
故
的值為
13分
考點(diǎn):導(dǎo)數(shù)的運(yùn)算、利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性、利用導(dǎo)數(shù)求函數(shù)的極值.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1)求
的單調(diào)區(qū)間;
(2)若
在
上恒成立,求所有實(shí)數(shù)
的值;
(3)對任意的
,證明:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
(
).
(1)試討論函數(shù)
的單調(diào)性;
(2)設(shè)函數(shù)
,
,當(dāng)函數(shù)
有零點(diǎn)時(shí),求實(shí)數(shù)
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(e為自然對數(shù)的底數(shù)).
(1)設(shè)曲線
處的切線為
,若
與點(diǎn)(1,0)的距離為
,求a的值;
(2)若對于任意實(shí)數(shù)
恒成立,試確定
的取值范圍;
(3)當(dāng)
上是否存在極值?若存在,請求出極值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
一個(gè)圓柱形圓木的底面半徑為1m,長為10m,將此圓木沿軸所在的平面剖成兩個(gè)部分.現(xiàn)要把其中一個(gè)部分加工成直四棱柱木梁,長度保持不變,底面為等腰梯形
(如圖所示,其中O為圓心,
在半圓上),設(shè)
,木梁的體積為V(單位:m3),表面積為S(單位:m2).![]()
(1)求V關(guān)于θ的函數(shù)表達(dá)式;
(2)求
的值,使體積V最大;
(3)問當(dāng)木梁的體積V最大時(shí),其表面積S是否也最大?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
.
(1)若曲線
在點(diǎn)
處的切線平行于
軸,求
的值;
(2)當(dāng)
時(shí),若對
,
恒成立,求實(shí)數(shù)
的取值范圍;
(3)設(shè)
,在(1)的條件下,證明當(dāng)
時(shí),對任意兩個(gè)不相等的正數(shù)
、
,有
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ax2+ln(x+1).
(1)當(dāng)a=
時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)
時(shí),函數(shù)y=f(x)圖像上的點(diǎn)都在
所表示的平面區(qū)域內(nèi),求實(shí)數(shù)a的取值范圍;
(3)求證:
(其中
,e是自然數(shù)對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
.
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)若函數(shù)
在區(qū)間
的最小值為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(
),其中
.
(1)若曲線
與
在點(diǎn)
處相交且有相同的切線,求
的值;
(2)設(shè)
,若對于任意的
,函數(shù)
在區(qū)間
上的值恒為負(fù)數(shù),求
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com