已知橢圓
:
的左、右焦點(diǎn)和短軸的兩個(gè)端點(diǎn)構(gòu)成邊長為2的正方形.![]()
(Ⅰ)求橢圓
的方程;
(Ⅱ)過點(diǎn)
的直線
與橢圓
相交于
,
兩點(diǎn).點(diǎn)
,記直線
的斜率分別為
,當(dāng)
最大時(shí),求直線
的方程.
(Ⅰ)橢圓
的方程為
;(Ⅱ)直線
的方程為
.
解析試題分析:(Ⅰ)由已知,橢圓
:
的左、右焦點(diǎn)和短軸的兩個(gè)端點(diǎn)構(gòu)成邊長為2的正方形,所以
,利用
,可得
,又橢圓的焦點(diǎn)在
軸上,從而得橢圓
的方程;(Ⅱ)需分直線的斜率是否為0討論.①當(dāng)直線
的斜率為0時(shí),則![]()
;②當(dāng)直線
的斜率不為0時(shí),設(shè)
,
,直線
的方程為
,將
代入
,整理得
.利用韋達(dá)定理列出
.結(jié)合
,
,列出
關(guān)于
的函數(shù),應(yīng)用均值不等式求其最值,從而得
的值,最后求出直線
的方程.
試題解析:(Ⅰ)由已知得
(2分),又
,∴橢圓
方程為
(4分)
(Ⅱ)①當(dāng)直線
的斜率為0時(shí),則![]()
; 6分
②當(dāng)直線
的斜率不為0時(shí),設(shè)
,
,直線
的方程為
,
將
代入
,整理得
.
則
,
. 8分
又
,
,
所以,![]()
![]()
![]()
=
![]()
10分.
令
,則![]()
![]()
![]()
所以當(dāng)且僅當(dāng)
,即
時(shí),取等號(hào). 由①②得,直線
的方程為
.13分.
考點(diǎn):1.橢圓方程的求法;2.直線和橢圓位置關(guān)系中最值問題;3.均值不等式.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線
的焦點(diǎn)為
,準(zhǔn)線為
,點(diǎn)
為拋物線C上的一點(diǎn),且
的外接圓圓心到準(zhǔn)線的距離為
.![]()
(I)求拋物線C的方程;
(II)若圓F的方程為
,過點(diǎn)P作圓F的2條切線分別交
軸于點(diǎn)
,求
面積的最小值時(shí)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知頂點(diǎn)在原點(diǎn)
,焦點(diǎn)在
軸上的拋物線過點(diǎn)
.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若拋物線與直線
交于
、
兩點(diǎn),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的離心率
,連接橢圓的四個(gè)頂點(diǎn)得到的菱形的面積為4.
(1)求橢圓的方程;
(2)設(shè)直線
與橢圓相交于不同的兩點(diǎn)A,B。已知點(diǎn)A的坐標(biāo)為
。若
,求直線
的傾斜角。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系
中,已知橢圓
經(jīng)過點(diǎn)![]()
,橢圓的離心率
.![]()
(1)求橢圓
的方程;
(2)過點(diǎn)
作兩直線與橢圓
分別交于相異兩點(diǎn)
、
.若
的平分線與
軸平行, 試探究直線
的斜率是否為定值?若是, 請(qǐng)給予證明;若不是, 請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
矩形
的中心在坐標(biāo)原點(diǎn),邊
與
軸平行,
=8,
=6.
分別是矩形四條邊的中點(diǎn),
是線段
的四等分點(diǎn),
是線段
的四等分點(diǎn).設(shè)直線
與
,
與
,
與
的交點(diǎn)依次為
.![]()
(1)求以
為長軸,以
為短軸的橢圓Q的方程;
(2)根據(jù)條件可判定點(diǎn)
都在(1)中的橢圓Q上,請(qǐng)以點(diǎn)L為例,給出證明(即證明點(diǎn)L在橢圓Q上).
(3)設(shè)線段
的
(
等分點(diǎn)從左向右依次為
,線段
的
等分點(diǎn)從上向下依次為
,那么直線
與哪條直線的交點(diǎn)一定在橢圓Q上?(寫出結(jié)果即可,此問不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓
直線
與圓
相切,且交橢圓
于
兩點(diǎn),
是橢圓的半焦距,
,
(Ⅰ)求
的值;
(Ⅱ)O為坐標(biāo)原點(diǎn),若
求橢圓
的方程;
(Ⅲ) 在(Ⅱ)的條件下,設(shè)橢圓
的左右頂點(diǎn)分別為A,B,動(dòng)點(diǎn)
,直線AS,BS與直線
分別交于M,N兩點(diǎn),求線段MN的長度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)拋物線
的焦點(diǎn)為
,準(zhǔn)線為
,
,以
為圓心的圓
與
相切于點(diǎn)
,
的縱坐標(biāo)為
,
是圓
與
軸除
外的另一個(gè)交點(diǎn).
(I)求拋物線
與圓
的方程;
( II)已知直線
,
與
交于
兩點(diǎn),
與
交于點(diǎn)
,且
, 求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
:![]()
,
(1)若橢圓的長軸長為4,離心率為
,求橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,設(shè)過定點(diǎn)
的直線
與橢圓
交于不同的兩點(diǎn)
,且
為銳角(
為坐標(biāo)原點(diǎn)),求直線
的斜率
的取值范圍;
(3)過原點(diǎn)
任意作兩條互相垂直的直線與橢圓
:![]()
相交于
四點(diǎn),設(shè)原點(diǎn)
到四邊形
的一邊距離為
,試求
時(shí)
滿足的條件.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com