巳知橢圓
的離心率是
.
⑴若點P(2,1)在橢圓上,求橢圓的方程;
⑵若存在過點A(1,0)的直線
,使點C(2,0)關于直線
的對稱點在橢圓上,求橢圓的焦距的取值范圍.
⑴
;⑵橢圓的焦距的取值范圍是
.
解析試題分析:⑴
,
,再將點
的坐標代入橢圓的方程,這樣便有三個方程,三者聯立,即可求出
,從而得橢圓的方程.⑵顯然斜率不存在或斜率等于0時,不可能滿足題意.故可設直線l的方程為:
,這樣可將點C(2,0)關于直線l的對稱點的坐標用
表示出來,然后代入橢圓的方程,從而得一關于
的方程:
.設
,因此原問題轉化為關于t的方程
有正根.根據二次方程根的分布可得
.進而求得橢圓的焦距的取值范圍.![]()
試題解析:⑴
,
∵點P(2,1)在橢圓上,∴
5分
⑵依題意,直線l的斜率存在且不為0,則直線l的方程為:
.
設點C(2,0)關于直線l的對稱點為
,則![]()
若點
在橢圓
上,則![]()
設
,因此原問題轉化為關于t的方程
有正根.
①當
時,方程一定有正根;
②當
時,則有![]()
∴綜上得
.
又橢圓的焦距為
.
故橢圓的焦距的取值范圍是(0,4] 14分
考點:1、橢圓的方程;2、直線與橢圓.
科目:高中數學 來源: 題型:解答題
在平面直角坐標系
中,如圖,已知橢圓E:
的左、右頂點分別為
、
,上、下頂點分別為
、
.設直線
的傾斜角的正弦值為
,圓
與以線段
為直徑的圓關于直線
對稱.![]()
(1)求橢圓E的離心率;
(2)判斷直線
與圓
的位置關系,并說明理由;
(3)若圓
的面積為
,求圓
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線
的準線與x軸交于點M,過點M作圓
的兩條切線,切點為A、B,
.
(1)求拋物線E的方程;
(2)過拋物線E上的點N作圓C的兩條切線,切點分別為P、Q,若P,Q,O(O為原點)三點共線,求點N的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C:
的左、右焦點分別為
,離心率
,連接橢圓的四個頂點所得四邊形的面積為
.
(1)求橢圓C的標準方程;
(2)設
是直線
上的不同兩點,若
,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知平面上的動點P(x,y)及兩個定點A(-2,0),B(2,0),直線PA,PB的斜率分別為K1,K2且K1K2=-![]()
(1).求動點P的軌跡C方程;
(2).設直線L:y=kx+m與曲線C交于不同兩點,M,N,當OM⊥ON時,求O點到直線L的距離(O為坐標原點)
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在平面直角坐標系
中,已知
,
,
是橢圓
上不同的三點,
,
,
在第三象限,線段
的中點在直線
上.![]()
(1)求橢圓的標準方程;
(2)求點C的坐標;
(3)設動點
在橢圓上(異于點
,
,
)且直線PB,PC分別交直線OA于
,
兩點,證明
為定值并求出該定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知點
為橢圓![]()
右焦點,圓![]()
與橢圓
的一個公共點為
,且直線
與圓
相切于點
.![]()
(1)求
的值及橢圓
的標準方程;
(2)設動點
滿足
,其中M、N是橢圓
上的點,
為原點,直線OM與ON的斜率之積為
,求證:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,已知點
和
,圓
是以
為圓心,半徑為
的圓,點
是圓
上任意一點,線段
的垂直平分線
和半徑
所在的直線交于點
.
(1)當點
在圓上運動時,求點
的軌跡方程
;
(2)已知
,
是曲線
上的兩點,若曲線
上存在點
,滿足
(
為坐標原點),求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線
.
(1)若圓心在拋物線
上的動圓,大小隨位置而變化,但總是與直線
相切,求所有的圓都經過的定點坐標;
(2)拋物線
的焦點為
,若過
點的直線與拋物線相交于
兩點,若
,求直線
的斜率;
(3)若過
正半軸上
點的直線與該拋物線交于
兩點,
為拋物線上異于
的任意一點,記
連線的斜率為
試求滿足
成等差數列的充要條件.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com