(本小題滿分12分)
在平面直角坐標(biāo)系
中,點(diǎn)
到兩定點(diǎn)F1
和F2
的距離之和為
,設(shè)點(diǎn)
的軌跡是曲線
.(1)求曲線
的方程; (2)若直線
與曲線
相交于不同兩點(diǎn)
、
(
、
不是曲線
和坐標(biāo)軸的交點(diǎn)),以
為直徑的圓過點(diǎn)
,試判斷直線
是否經(jīng)過一定點(diǎn),若是,求出定點(diǎn)坐標(biāo);若不是,說明理由.
(1)
;(2)直線
過定點(diǎn),定點(diǎn)坐標(biāo)為
.
解析試題分析:(1)設(shè)
,由橢圓定義可知,
點(diǎn)
的軌跡
是以
和
為焦點(diǎn),長半軸長為2的橢圓.
它的短半軸長
,故曲線
的方程為:
(2)設(shè)
.
聯(lián)立
消去y,整理得
,
則 ![]()
又
.
因?yàn)橐?img src="http://thumb.zyjl.cn/pic5/tikupic/9d/d/1unuy4.png" style="vertical-align:middle;" />為直徑的圓過點(diǎn)
,
,即
.
.![]()
.
.
解得:
,且均滿足
.
當(dāng)
時(shí),
的方程
,直線過點(diǎn)
,與已知矛盾;
當(dāng)
時(shí),
的方程為
,直線過定點(diǎn)
.
所以,直線
過定點(diǎn),定點(diǎn)坐標(biāo)為
.
考點(diǎn):本題主要考查橢圓的定義及標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系。
點(diǎn)評:典型題,關(guān)于橢圓的考查,往往以這種“連環(huán)題”的形式出現(xiàn),首先求標(biāo)準(zhǔn)方程,往往不難。而涉及在直線與橢圓的位置關(guān)系,往往要利用韋達(dá)定理,實(shí)現(xiàn)“整體代換”。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的中心在原點(diǎn),焦點(diǎn)在
軸上,一條經(jīng)過點(diǎn)
且方向向量為
的直線
交橢圓
于
兩點(diǎn),交
軸于
點(diǎn),且
.![]()
(1)求直線
的方程;
(2)求橢圓
長軸長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知圓
的圓心為原點(diǎn)
,且與直線
相切。![]()
(1)求圓
的方程;
(2)點(diǎn)
在直線
上,過
點(diǎn)引圓
的兩條切線
,切點(diǎn)為
,求證:直線
恒過定點(diǎn)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓E:
的焦點(diǎn)坐標(biāo)為
(
),點(diǎn)M(
,
)在橢圓E上.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)Q(1,0),過Q點(diǎn)引直線
與橢圓E交于
兩點(diǎn),求線段
中點(diǎn)
的軌跡方程;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)
已知點(diǎn)
,參數(shù)
,點(diǎn)Q在曲線C:
上.
(1)求在直角坐標(biāo)系中點(diǎn)
的軌跡方程和曲線C的方程;
(2)求|PQ|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,在平面直角坐標(biāo)系
中,橢圓
的焦距為2,且過點(diǎn)
.
求橢圓
的方程;
若點(diǎn)
,
分別是橢圓
的左、右頂點(diǎn),直線
經(jīng)過點(diǎn)
且垂直于
軸,點(diǎn)
是橢圓上異于
,
的任意一點(diǎn),直線
交
于點(diǎn)![]()
![]()
(ⅰ)設(shè)直線
的斜率為
直線
的斜率為
,求證:
為定值;
(ⅱ)設(shè)過點(diǎn)
垂直于
的直線為
.求證:直線
過定點(diǎn),并求出定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知橢圓
,橢圓
以
的長軸為短軸,且與
有相同的離心率.
(1)求橢圓
的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A,B分別在橢圓
和
上,
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,拋物線
的頂點(diǎn)為坐標(biāo)原點(diǎn)
,焦點(diǎn)
在
軸上,準(zhǔn)線
與圓
相切.![]()
(Ⅰ)求拋物線
的方程;
(Ⅱ)若點(diǎn)
在拋物線
上,且
,求點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
如圖,已知橢圓
的焦點(diǎn)為
、
,離心率為
,過點(diǎn)
的直線
交橢圓
于
、
兩點(diǎn).![]()
(1)求橢圓
的方程;
(2)①求直線
的斜率
的取值范圍;
②在直線
的斜率
不斷變化過程中,探究
和
是否總相等?若相等,請給出證明,若不相等,說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com