(本小題滿分12分)
已知橢圓
,橢圓
以
的長軸為短軸,且與
有相同的離心率.
(1)求橢圓
的方程;
(2)設O為坐標原點,點A,B分別在橢圓
和
上,
,求直線
的方程.
(1)
(2)
或![]()
解析試題分析:.(1)由已知可設橢圓
的方程為
其離心率為
,故
,則
故橢圓的方程為
(2)解法一
兩點的坐標分別記為
由
及(1)知,
三點共線且點
,
不在
軸上,
因此可以設直線
的方程為
將
代入
中,得
,所以
將
代入
中,則
,所以![]()
由
,得
,即![]()
解得
,故直線
的方程為
或
解法二
兩點的坐標分別記為
由
及(1)知,
三點共線且點
,
不在
軸上,
因此可以設直線
的方程為
將
代入
中,得
,所以
由
,得
,
將
代入
中,得
,即
解得
,故直線
的方程為
或![]()
考點:橢圓方程及性質(zhì)
點評:再求橢圓方程時要注意焦點的位置,第二問中向量關(guān)系轉(zhuǎn)化為坐標關(guān)系,A,B兩點坐標可將向量與兩橢圓方程聯(lián)系起來
科目:高中數(shù)學 來源: 題型:解答題
(滿分13分)
(1)某三棱錐的側(cè)視圖和俯視圖如圖所示,求三棱錐的體積.
(2)過直角坐標平面
中的拋物線
的焦點
作一條傾斜角為
的直線與拋物線相交于A,B兩點. 用
表示A,B之間的距離;![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)已知直線
經(jīng)過橢圓
的左頂點A和上頂點D,橢圓
的右頂點為
,點
和橢圓
上位于
軸上方的動點,直線,
與直線
分別交于
兩點。![]()
(I)求橢圓
的方程;
(Ⅱ)求線段MN的長度的最小值;
(Ⅲ)當線段MN的長度最小時,在橢圓
上是否存在這
樣的點
,使得
的面積為
?若存在,確定點
的個數(shù),若不存在,說明理由
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
在平面直角坐標系
中,點
到兩定點F1
和F2
的距離之和為
,設點
的軌跡是曲線
.(1)求曲線
的方程; (2)若直線
與曲線
相交于不同兩點
、
(
、
不是曲線
和坐標軸的交點),以
為直徑的圓過點
,試判斷直線
是否經(jīng)過一定點,若是,求出定點坐標;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分13分)
已知橢圓的中點在原點O,焦點在x軸上,點
是其左頂點,點C在橢圓上且
·
="0," |
|=|
|.(點C在x軸上方)
(I)求橢圓的方程;
(II)若平行于CO的直線
和橢圓交于M,N兩個不同點,求
面積的最大值,并求此時直線
的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)
已知橢圓
的離心率為
,短軸一個端點到右焦點的距離為
.
(1)求橢圓
的方程;
(2)設直線
與橢圓
交于
兩點,坐標原點
到直線
的距離為
,求![]()
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)設橢圓E:
(a,b>0)過M(2,
) ,N(
,1)兩點,O為坐標原點.
(Ⅰ)求橢圓E的方程;
(Ⅱ)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交A,B且
?若存在,寫出該圓的方程,若不存在說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系
中,拋物線C的頂點在原點,焦點F的坐標為(1,0)。
(1)求拋物線C的標準方程;
(2)設M、N是拋物線C的準線上的兩個動點,且它們的縱坐標之積為
,直線MO、NO與拋物線的交點分別為點A、B,求證:動直線AB恒過一個定點。
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com