中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

如圖,四棱錐P-ABCD的底面ABCD為矩形,且PA="AD=1,AB=2," ,.
(1)求證:平面平面
(2)求三棱錐D-PAC的體積;
(3)求直線PC與平面ABCD所成角的正弦值.

(1)證明:∵ABCD為矩形
            ∵          ∴
平面,又∵平面PAD               ∴平面平面 

(2) ∵………  5分
由(1)知平面,且  ∴平面………  6分
………  8分
(3)解法1:以點A為坐標原點,AB所在的直線為y軸建立空間直角坐標系如右圖示,則依題意可得,,
可得, ………  10分
平面ABCD的單位法向量為,設直線PC與平面ABCD所成角為

,即直線PC與平面ABCD所成角的正弦值

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

如圖,四邊形ABCD為矩形,PD⊥平面ABCDPDQAQAADPD.

(1)求證:平面PQC⊥平面DCQ
(2)若二面角Q-BP-C的余弦值為-,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

四棱錐中,底面為平行四邊形,側面,已知
(Ⅰ)求證:
(Ⅱ)在SB上選取點P,使SD//平面PAC ,并證明;
(Ⅲ)求直線與面所成角的正弦值。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,三棱錐P—ABC中,平面PAC⊥平面BAC,AP=AB=AC=2,∠BAC=∠PAC=120°。

(I)求棱PB的長;
(II)求二面角P—AB—C的大小。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題10分)如圖,已知平行四邊形ABCD和矩形ACEF所在的平面互相垂直,

(1)求證:AC⊥BF;
(2)求點A到平面FBD的距離. 

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設向量并確定的關系,使軸垂直.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在棱長為1正方體ABCD-A1B1C1D1中,M和N分別為A1B1和BB1的中點
(1)求直線AM和CN所成角的余弦值;
(2)若P為B1C1的中點,求直線CN與平面MNP所成角的余弦值;
(3)P為B1C1上一點,且,當 B1D⊥面PMN時,求的值.
 

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分15分) 如圖,在三棱錐中,,點分別是的中點,底面
(1)求證:平面
(2)當時,求直線與平面所成角的正弦值;
(3)當為何值時,在平面內的射影恰好為的重心.

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

已知點P在y=x2上,且點P到直線y=x的距離為,這樣的點P的個數是(  )

A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案