(本小題13分)已知函數(shù)f(x)=
-
(a>0,x>0).
(1)求證:f(x)在(0,+∞)上是單調(diào)遞增函數(shù);
(2)若f(x)在[
,2]上的值域是[
,2],求a的值.
(1)證明:見(jiàn)解析;(2) a=
.
【解析】本事主要是考查了函數(shù)的單調(diào)性和函數(shù)值域的求解的綜合運(yùn)用。
(1)先分析函數(shù)的定義域內(nèi)任意兩個(gè)變量,代入函數(shù)解析式中作差,然后變形定號(hào),下結(jié)論。
(2)∵f(x)在[
,2]上的值域是[
,2],那么可知又f(x)在[
,2]上單調(diào)遞增,可知最大值和最小值在端點(diǎn)值取得求解得到參數(shù)a的值。
解:(1)證明:設(shè)x2>x1>0,則x2-x1>0,x1x2>0.
∵f(x2)-f(x1)=(
-
)-(
-
)=
-![]()
=
>0,
∴f(x2)>f(x1),∴f(x)在(0,+∞)上是單調(diào)遞增的.………………6分
(2)∵f(x)在[
,2]上的值域是[
,2],
又f(x)在[
,2]上單調(diào)遞增,∴f(
)=
,f(2)=2,
易得a=
.
………………13分
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2011屆北京市東城區(qū)示范校高三第二學(xué)期綜合練習(xí)數(shù)學(xué)文卷 題型:解答題
(本小題13分)已知向量
,![]()
(1)當(dāng)
∥
時(shí),求
的值;
(2)求
在
上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年北京市示范校高三12月綜合練習(xí)(一)文科數(shù)學(xué) 題型:解答題
(本小題13分)
已知等比數(shù)列
滿(mǎn)足
,且
是
,
的等差中項(xiàng).
(Ⅰ)求數(shù)列
的通項(xiàng)公式;
(Ⅱ)若
,
,求使
成立的正整數(shù)
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年福建省高一上學(xué)期期末考試數(shù)學(xué)理卷 題型:解答題
(本小題13分)
已知直線
過(guò)直線
和
的交點(diǎn);
(Ⅰ)若直線
與直線
垂直,求直線
的方程.
(Ⅱ)若原點(diǎn)
到直線
的距離為1.求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江西省協(xié)作體高三第二次聯(lián)考數(shù)學(xué)理卷 題型:解答題
(本小題13分)
已知拋物線方程為
,過(guò)
作直線
.
①若
與
軸不垂直,交拋物線于A、B兩點(diǎn),是否存在
軸上一定點(diǎn)
,使得
?若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由?
②若
與
軸垂直,拋物線的任一切線與
軸和
分別交于M、N兩點(diǎn),則自點(diǎn)M到以QN為直徑的圓的切線長(zhǎng)
為定值,試證之;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年北京市東城區(qū)示范校高三第二學(xué)期綜合練習(xí)數(shù)學(xué)文卷 題型:解答題
(本小題13分)已知向量
,![]()
(1)當(dāng)
∥
時(shí),求
的值;
(2)求
在
上的值域.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com